• Title/Summary/Keyword: YOLOv5

Search Result 169, Processing Time 0.029 seconds

Analysis of Floating Population in Schools Using Open Source Hardware and Deep Learning-Based Object Detection Algorithm (오픈소스 하드웨어와 딥러닝 기반 객체 탐지 알고리즘을 활용한 교내 유동인구 분석)

  • Kim, Bo-Ram;Im, Yun-Gyo;Shin, Sil;Lee, Jin-Hyeok;Chu, Sung-Won;Kim, Na-Kyeong;Park, Mi-So;Yoon, Hong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.91-98
    • /
    • 2022
  • In this study, Pukyong National University's floating population survey and analysis were conducted using Raspberry Pie, an open source hardware, and object detection algorithms based on deep learning technology. After collecting images using Raspberry Pie, the person detection of the collected images using YOLO3's IMAGEAI and YOLOv5 models was performed, and Haar-like features and HOG models were used for accuracy comparison analysis. As a result of the analysis, the smallest floating population was observed due to the school anniversary. In general, the floating population at the entrance was larger than the floating population at the exit, and both the entrance and exit were found to be greatly affected by the school's anniversary and events.

2-Stage Detection and Classification Network for Kiosk User Analysis (디스플레이형 자판기 사용자 분석을 위한 이중 단계 검출 및 분류 망)

  • Seo, Ji-Won;Kim, Mi-Kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.5
    • /
    • pp.668-674
    • /
    • 2022
  • Machine learning techniques using visual data have high usability in fields of industry and service such as scene recognition, fault detection, security and user analysis. Among these, user analysis through the videos from CCTV is one of the practical way of using vision data. Also, many studies about lightweight artificial neural network have been published to increase high usability for mobile and embedded environment so far. In this study, we propose the network combining the object detection and classification for mobile graphic processing unit. This network detects pedestrian and face, classifies age and gender from detected face. Proposed network is constructed based on MobileNet, YOLOv2 and skip connection. Both detection and classification models are trained individually and combined as 2-stage structure. Also, attention mechanism is used to improve detection and classification ability. Nvidia Jetson Nano is used to run and evaluate the proposed system.

Automatic Estimation of Tillers and Leaf Numbers in Rice Using Deep Learning for Object Detection

  • Hyeokjin Bak;Ho-young Ban;Sungryul Chang;Dongwon Kwon;Jae-Kyeong Baek;Jung-Il Cho ;Wan-Gyu Sang
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.81-81
    • /
    • 2022
  • Recently, many studies on big data based smart farming have been conducted. Research to quantify morphological characteristics using image data from various crops in smart farming is underway. Rice is one of the most important food crops in the world. Much research has been done to predict and model rice crop yield production. The number of productive tillers per plant is one of the important agronomic traits associated with the grain yield of rice crop. However, modeling the basic growth characteristics of rice requires accurate data measurements. The existing method of measurement by humans is not only labor intensive but also prone to human error. Therefore, conversion to digital data is necessary to obtain accurate and phenotyping quickly. In this study, we present an image-based method to predict leaf number and evaluate tiller number of individual rice crop using YOLOv5 deep learning network. We performed using various network of the YOLOv5 model and compared them to determine higher prediction accuracy. We ako performed data augmentation, a method we use to complement small datasets. Based on the number of leaves and tiller actually measured in rice crop, the number of leaves predicted by the model from the image data and the existing regression equation were used to evaluate the number of tillers using the image data.

  • PDF

Research on Improving the Performance of YOLO-Based Object Detection Models for Smoke and Flames from Different Materials (다양한 재료에서 발생되는 연기 및 불꽃에 대한 YOLO 기반 객체 탐지 모델 성능 개선에 관한 연구 )

  • Heejun Kwon;Bohee Lee;Haiyoung Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.3
    • /
    • pp.261-273
    • /
    • 2024
  • This paper is an experimental study on the improvement of smoke and flame detection from different materials with YOLO. For the study, images of fires occurring in various materials were collected through an open dataset, and experiments were conducted by changing the main factors affecting the performance of the fire object detection model, such as the bounding box, polygon, and data augmentation of the collected image open dataset during data preprocessing. To evaluate the model performance, we calculated the values of precision, recall, F1Score, mAP, and FPS for each condition, and compared the performance of each model based on these values. We also analyzed the changes in model performance due to the data preprocessing method to derive the conditions that have the greatest impact on improving the performance of the fire object detection model. The experimental results showed that for the fire object detection model using the YOLOv5s6.0 model, data augmentation that can change the color of the flame, such as saturation, brightness, and exposure, is most effective in improving the performance of the fire object detection model. The real-time fire object detection model developed in this study can be applied to equipment such as existing CCTV, and it is believed that it can contribute to minimizing fire damage by enabling early detection of fires occurring in various materials.

Video-based Inventory Management and Theft Prevention for Unmanned Stores (재고 관리 및 도난 방지를 위한 영상분석 기반 무인 매장 관리 시스템)

  • Soojin Lee;Jiyoung Moon;Haein Park;Jiheon Kang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.1
    • /
    • pp.77-89
    • /
    • 2024
  • This paper presents an unmanned store management system that can provide inventory management and theft prevention for displayed products using a small camera that can monitor the shelves of sold products in small and medium-sized stores. This system is a service solution that integrates object recognition, real-time communication, security management, access management, and mobile authentication. The proposed system uses a custom YOLOv5-x model to recognize objects on the display, measure quantities in real time, and support real-time data communication with servers through Raspberry Pie. In addition, the number of objects in the database and the object recognition results are compared to detect suspected theft situations and provide burial images at the time of theft. The proposed unmanned store solution is expected to improve the efficiency of small and medium-sized unmanned store operations and contribute to responding to theft.

Convenience Store Product Recognition Application for the Blind (시각장애인을 위한 편의점 제품 인식 애플리케이션)

  • Han, Sang Hyeok;Park, Da Soo;Lim, Chae Min;Jeong, Ji Woon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.1298-1301
    • /
    • 2021
  • 본 논문은 딥러닝 학습을 통한 객체(편의점제품) 인식 시스템을 소개한다. 편의점 내에서 시각장애인의 접근성인 매우 떨어지고 있다. 그나마 점자가 있는 제품은 음료수 제품이지만 제품 이름이 아닌 범주로 표현하고 있어 원하는 제품 구매를 어렵게 한다. 본 논문에서는 YOLOv5를 통한 딥러닝 학습을 사용하여 정확한 제품을 시각장애인에게 제공할 수 있는 애플리케이션을 개발했다. 사용한 학습데이터 세트는 제품을 직접 찍어 확보했으며, 국내 11개 제품을 포함한다. 학습데이터 세트는 총 23,814장을 사용했으며, 결과 정확도를 나타내는 mAP_0.5:0.95 는 약 0.9790의 성능을 보였다.

Object Detection for the Visually Impaired in a Voice Guidance System (시각장애인을 위한 보행 안내 시스템의 객체 인식)

  • Soo-Yeon Son;Eunho-Jeong;Hyon Hee Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.1206-1207
    • /
    • 2023
  • 보행의 제한은 시각장애인의 자립적인 생활을 어렵게 하며 안전에도 큰 영향을 끼친다. 본 논문은 YOLOv5(You Only Look Once version 5)를 활용하여 안전한 보행을 돕는 방법을 제시한다. 제시하는 방법은 자동차나 자전거, 전동킥보드 등의 움직이는 사물과 사람을 실시간으로 인식하여 시각장애인에게 알림으로써 보행에 도움을 줄 수 있으며 시각장애인의 안전한 보행에 도움을 줄 것이라 기대한다.

A Study on the Artificial Intelligence-Based Soybean Growth Analysis Method (인공지능 기반 콩 생장분석 방법 연구)

  • Moon-Seok Jeon;Yeongtae Kim;Yuseok Jeong;Hyojun Bae;Chaewon Lee;Song Lim Kim;Inchan Choi
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.5
    • /
    • pp.1-14
    • /
    • 2023
  • Soybeans are one of the world's top five staple crops and a major source of plant-based protein. Due to their susceptibility to climate change, which can significantly impact grain production, the National Agricultural Science Institute is conducting research on crop phenotypes through growth analysis of various soybean varieties. While the process of capturing growth progression photos of soybeans is automated, the verification, recording, and analysis of growth stages are currently done manually. In this paper, we designed and trained a YOLOv5s model to detect soybean leaf objects from image data of soybean plants and a Convolution Neural Network (CNN) model to judgement the unfolding status of the detected soybean leaves. We combined these two models and implemented an algorithm that distinguishes layers based on the coordinates of detected soybean leaves. As a result, we developed a program that takes time-series data of soybeans as input and performs growth analysis. The program can accurately determine the growth stages of soybeans up to the second or third compound leaves.

A Technique for Interpreting and Adjusting Depth Information of each Plane by Applying an Object Detection Algorithm to Multi-plane Light-field Image Converted from Hologram Image (Light-field 이미지로 변환된 다중 평면 홀로그램 영상에 대해 객체 검출 알고리즘을 적용한 평면별 객체의 깊이 정보 해석 및 조절 기법)

  • Young-Gyu Bae;Dong-Ha Shin;Seung-Yeol Lee
    • Journal of Broadcast Engineering
    • /
    • v.28 no.1
    • /
    • pp.31-41
    • /
    • 2023
  • Directly converting the focal depth and image size of computer-generated-hologram (CGH), which is obtained by calculating the interference pattern of light from the 3D image, is known to be quite difficult because of the less similarity between the CGH and the original image. This paper proposes a method for separately converting the each of focal length of the given CGH, which is composed of multi-depth images. Firstly, the proposed technique converts the 3D image reproduced from the CGH into a Light-Field (LF) image composed of a set of 2D images observed from various angles, and the positions of the moving objects for each observed views are checked using an object detection algorithm YOLOv5 (You-Only-Look-Once-version-5). After that, by adjusting the positions of objects, the depth-transformed LF image and CGH are generated. Numerical simulations and experimental results show that the proposed technique can change the focal length within a range of about 3 cm without significant loss of the image quality when applied to the image which have original depth of 10 cm, with a spatial light modulator which has a pixel size of 3.6 ㎛ and a resolution of 3840⨯2160.

Deep Learning based violent protest detection system

  • Lee, Yeon-su;Kim, Hyun-chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.3
    • /
    • pp.87-93
    • /
    • 2019
  • In this paper, we propose a real-time drone-based violent protest detection system. Our proposed system uses drones to detect scenes of violent protest in real-time. The important problem is that the victims and violent actions have to be manually searched in videos when the evidence has been collected. Firstly, we focused to solve the limitations of existing collecting evidence devices by using drone to collect evidence live and upload in AWS(Amazon Web Service)[1]. Secondly, we built a Deep Learning based violence detection model from the videos using Yolov3 Feature Pyramid Network for human activity recognition, in order to detect three types of violent action. The built model classifies people with possession of gun, swinging pipe, and violent activity with the accuracy of 92, 91 and 80.5% respectively. This system is expected to significantly save time and human resource of the existing collecting evidence.