• 제목/요약/키워드: YOLO-V5

검색결과 44건 처리시간 0.025초

Design and Implementation of Fire Detection System Using New Model Mixing

  • Gao, Gao;Lee, SangHyun
    • International Journal of Advanced Culture Technology
    • /
    • 제9권4호
    • /
    • pp.260-267
    • /
    • 2021
  • In this paper, we intend to use a new mixed model of YoloV5 and DeepSort. For fire detection, we want to increase the accuracy by automatically extracting the characteristics of the flame in the image from the training data and using it. In addition, the high false alarm rate, which is a problem of fire detection, is to be solved by using this new mixed model. To confirm the results of this paper, we tested indoors and outdoors, respectively. Looking at the indoor test results, the accuracy of YoloV5 was 75% at 253Frame and 77% at 527Frame, and the YoloV5+DeepSort model showed the same accuracy at 75% at 253 frames and 77% at 527 frames. However, it was confirmed that the smoke and fire detection errors that appeared in YoloV5 disappeared. In addition, as a result of outdoor testing, the YoloV5 model had an accuracy of 75% in detecting fire, but an error in detecting a human face as smoke appeared. However, as a result of applying the YoloV5+DeepSort model, it appeared the same as YoloV5 with an accuracy of 75%, but it was confirmed that the false positive phenomenon disappeared.

지능형 관제시스템을 위한 딥러닝 기반의 다중 객체 분류 및 추적에 관한 연구 (Research of Deep Learning-Based Multi Object Classification and Tracking for Intelligent Manager System)

  • 이준환
    • 스마트미디어저널
    • /
    • 제12권5호
    • /
    • pp.73-80
    • /
    • 2023
  • 최근 지능형 관제 시스템은 다양한 응용 분야에서 빠르게 발전하고 있으며, 딥러닝, IoT, 클라우드 컴퓨팅 등의 기술이 지능형 관제 시스템에 활용하는 방안이 연구되고 있다. 지능형 관제 시스템에서 중요한 기술은 영상에서 객체를 인식하고 추적하는 것이다. 그러나 기존의 다중 객체 추적 기술은 정확도 및 속도에서 문제점을 가지고 있다. 본 논문에서는 객체 추적의 정확성을 높이고, 객체가 서로 겹쳐있거나 동일한 클래스에 속하는 객체들이 많을 경우에도 빠르고 정확하게 추적 가능한 원샷 아키텍처 기반의 YOLO v5와 YOLO v6을 사용하여 실시간 지능형 관제시스템을 구현하였다. 실험은 YOLO v5와 YOLO v6를 비교하여 평가하였다. 실험결과 YOLO v6 모델이 지능형 관제시스템에 적합한 성능을 보여주고 있다. 실험결과 YOLO v6 모델이 지능형 관제시스템에 적합한 성능을 보여주고 있다.

시각 장애인을 위한 상품 영양 정보 안내 시스템 (Product Nutrition Information System for Visually Impaired People)

  • 정종욱;이제경;김효리;오유수
    • 대한임베디드공학회논문지
    • /
    • 제18권5호
    • /
    • pp.233-240
    • /
    • 2023
  • Nutrition information about food is written on the label paper, which is very inconvenient for visually impaired people to recognize. In order to solve the inconvenience of visually impaired people with nutritional information recognition, this paper proposes a product nutrition information guide system for visually impaired people. In the proposed system, user's image data input through UI, and object recognition is carried out through YOLO v5. The proposed system is a system that provides voice guidance on the names and nutrition information of recognized products. This paper constructs a new dataset that augments the 319 classes of canned/late-night snack product image data using rotate matrix techniques, pepper noise, and salt noise techniques. The proposed system compared and analyzed the performance of YOLO v5n, YOLO v5m, and YOLO v5l models through hyperparameter tuning and learned the dataset built with YOLO v5n models. This paper compares and analyzes the performance of the proposed system with that of previous studies.

YOLO 기반 선로 고정장치 객체 탐지 기법의 성능 분석 (Performance Analysis of Object Detection Method for Railway Track Equipment Based on YOLO)

  • 박준휘;박창준;김남중;곽정환
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.69-71
    • /
    • 2023
  • 본 논문은 YOLO 기반 모델의 철도 시스템 내 선로 고정장치 탐지 성능을 비교하고 분석한다. 여기서 철도 시스템은 열차가 주행하기 위한 선로, 침목, 패스너 등의 구성요소를 포함한다. 침목은 지반과 직접적으로 연결되며, 선로를 지반 위에 안정적으로 지지하고 궤간을 정확하게 유지하는 역할을 한다. 또한, 패스너는 선로를 침목에 단단히 고정시키는 역할을 한다. 이러한 선로 고정장치의 부재는 인명 사고로 이어질 수 있어 지속적인 관리와 유지 보수가 필수적이다. 본 논문에서는 철도 시스템의 선로 고정장치 탐지를 위해 YOLO V5 및 V8 딥러닝 모델의 적용 가능성을 실험적으로 접근하며, 두 모델의 탐지 성능을 비교한다. 실험 결과, YOLO V8 및 V5 모델은 모두 뛰어난 성능을 보이는데, 특히 YOLO V8 모델이 더욱 우수한 성능을 보인다. 이로써 YOLO 알고리즘은 선로 고정장치 탐지에 적합하다는 것을 증명한다. 그러나 일부 False Positive Sample이 관측되었음을 확인하고, 이로부터 모델 성능의 개선이 필요하다는 결론을 도출하였다.

  • PDF

A Study on Algorithm Selection and Comparison for Improving the Performance of an Artificial Intelligence Product Recognition Automatic Payment System

  • Kim, Heeyoung;Kim, Dongmin;Ryu, Gihwan;Hong, Hotak
    • International Journal of Advanced Culture Technology
    • /
    • 제10권1호
    • /
    • pp.230-235
    • /
    • 2022
  • This study is to select an optimal object detection algorithm for designing a self-checkout counter to improve the inconvenience of payment systems for products without existing barcodes. To this end, a performance comparison analysis of YOLO v2, Tiny YOLO v2, and the latest YOLO v5 among deep learning-based object detection algorithms was performed to derive results. In this paper, performance comparison was conducted by forming learning data as an example of 'donut' in a bakery store, and the performance result of YOLO v5 was the highest at 96.9% of mAP. Therefore, YOLO v5 was selected as the artificial intelligence object detection algorithm to be applied in this paper. As a result of performance analysis, when the optimal threshold was set for each donut, the precision and reproduction rate of all donuts exceeded 0.85, and the majority of donuts showed excellent recognition performance of 0.90 or more. We expect that the results of this paper will be helpful as the fundamental data for the development of an automatic payment system using AI self-service technology that is highly usable in the non-face-to-face era.

회랑 감시를 위한 딥러닝 알고리즘 학습 및 성능분석 (Deep Learning Algorithm Training and Performance Analysis for Corridor Monitoring)

  • 정우진;홍석민;최원혁
    • 한국항행학회논문지
    • /
    • 제27권6호
    • /
    • pp.776-781
    • /
    • 2023
  • K-UAM은 2035년까지의 성숙기 이후 상용화될 예정이다. UAM 회랑은 기존의 헬리콥터 회랑을 수직 분리하여 사용될 예정이기에 회량 사용량이 증가할 것으로 예상된다. 따라서 회랑을 모니터링하는 시스템도 필요하다. 최근 객체 검출 알고리즘이 크게 발전하였다. 객체 검출 알고리즘은 1단계 탐지와, 2단계 탐지 모델로 나뉜다. 실시간 객체 검출에 있어서 2단계 모델은 너무 느리기에 적합하지 않다. 기존 1단계 모델은 정확도에 문제가 있었지만, 버전 업그레이드를 통해 성능이 향상되었다. 1단계 모델 중 YOLO-V5는 모자이크 기법을 통한 소형 객체 검출 성능을 향상시킨 모델이다. 따라서 YOLO-V5는 넓은 회랑의 실시간 모니터링에 가장 적합하다고 판단된다. 본 논문에서는 YOLO-V5 알고리즘을 학습시켜 궁극적으로 회랑 모니터링 시스템에 대한 적합도를 분석한다.

객체탐지모델 YOLO의 버전별 특성 비교 연구 (A comparative study on the characteristics of each version of object detection model YOLO)

  • 김준용
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.75-78
    • /
    • 2023
  • 본 논문은 객체탐지 모델 중 주류를 이루고 있는 YOLO의 v1부터 v8까지의 특성을 비교 분석하여 각각의 버전에 최적화할 수 있는 모델에 대한 연구이다. 연구 결과 v1, v2는 정확성이 최우선인 모델에 적합하다. 반면, v3, v4는 속도가 우선인 모델에 적합하다. 또한 v5, v6는 정확도와 속도 사이의 균형이 필요한 모델에 적합하다는 결론을 얻었다. v7, v8은 메모리 및 컴퓨팅 성능에 제약이 있는 경우 주로 적용이 가능하며, 적은 연산과 저 메모리 사용으로 객체를 탐지하여 포즈추정이나 객체 추적 등을 적용할 모델에 적합하다는 결과를 확인하였다.

  • PDF

YOLO, EAST: 신경망 모델을 이용한 문자열 위치 검출 성능 비교 (YOLO, EAST : Comparison of Scene Text Detection Performance, Using a Neural Network Model)

  • 박찬용;임영민;정승대;조영혁;이병철;이규현;김진욱
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권3호
    • /
    • pp.115-124
    • /
    • 2022
  • 본 논문에서는 최근 다양한 분야에서 많이 활용되고 있는 YOLO와 EAST 신경망을 이미지 속 문자열 탐지문제에 적용해보고 이들의 성능을 비교분석 해 보았다. YOLO 신경망은 일반적으로 이미지 속 문자영역 탐지에 낮은 성능을 보인다고 알려졌으나, 실험결과 YOLOv3는 문자열 탐지에 비교적 약점을 보이지만 최근 출시된 YOLOv4와 YOLOv5의 경우 다양한 형태의 이미지 속에 있는 한글과 영문 문자열 탐지에 뛰어난 성능을 보여줌을 확인하였다. 따라서, 이들 YOLO 신경망 기반 문자열 탐지방법이 향후 문자 인식 분야에서 많이 활용될 것으로 전망한다.

가상 데이터를 활용한 번호판 문자 인식 및 차종 인식 시스템 제안 (Proposal for License Plate Recognition Using Synthetic Data and Vehicle Type Recognition System)

  • 이승주;박구만
    • 방송공학회논문지
    • /
    • 제25권5호
    • /
    • pp.776-788
    • /
    • 2020
  • 본 논문에서는 딥러닝을 이용한 차종 인식과 자동차 번호판 문자 인식 시스템을 제안한다. 기존 시스템에서는 영상처리를 통한 번호판 영역 추출과 DNN을 이용한 문자 인식 방법을 사용하였다. 이러한 시스템은 환경이 변화되면 인식률이 하락되는 문제가 있다. 따라서, 제안하는 시스템은 실시간 검출과 환경 변화에 따른 정확도 하락에 초점을 맞춰 1-stage 객체 검출 방법인 YOLO v3를 사용하였으며, RGB 카메라 한 대로 실시간 차종 및 번호판 문자 인식이 가능하다. 학습데이터는 차종 인식과 자동차 번호판 영역 검출의 경우 실제 데이터를 사용하며, 자동차 번호판 문자 인식의 경우 가상 데이터만을 사용하였다. 각 모듈별 정확도는 차종 검출은 96.39%, 번호판 검출은 99.94%, 번호판 검출은 79.06%를 기록하였다. 이외에도 YOLO v3의 경량화 네트워크인 YOLO v3 tiny를 이용하여 정확도를 측정하였다.

A Comparative Study of Deep Learning Techniques for Alzheimer's disease Detection in Medical Radiography

  • Amal Alshahrani;Jenan Mustafa;Manar Almatrafi;Layan Albaqami;Raneem Aljabri;Shahad Almuntashri
    • International Journal of Computer Science & Network Security
    • /
    • 제24권5호
    • /
    • pp.53-63
    • /
    • 2024
  • Alzheimer's disease is a brain disorder that worsens over time and affects millions of people around the world. It leads to a gradual deterioration in memory, thinking ability, and behavioral and social skills until the person loses his ability to adapt to society. Technological progress in medical imaging and the use of artificial intelligence, has provided the possibility of detecting Alzheimer's disease through medical images such as magnetic resonance imaging (MRI). However, Deep learning algorithms, especially convolutional neural networks (CNNs), have shown great success in analyzing medical images for disease diagnosis and classification. Where CNNs can recognize patterns and objects from images, which makes them ideally suited for this study. In this paper, we proposed to compare the performances of Alzheimer's disease detection by using two deep learning methods: You Only Look Once (YOLO), a CNN-enabled object recognition algorithm, and Visual Geometry Group (VGG16) which is a type of deep convolutional neural network primarily used for image classification. We will compare our results using these modern models Instead of using CNN only like the previous research. In addition, the results showed different levels of accuracy for the various versions of YOLO and the VGG16 model. YOLO v5 reached 56.4% accuracy at 50 epochs and 61.5% accuracy at 100 epochs. YOLO v8, which is for classification, reached 84% accuracy overall at 100 epochs. YOLO v9, which is for object detection overall accuracy of 84.6%. The VGG16 model reached 99% accuracy for training after 25 epochs but only 78% accuracy for testing. Hence, the best model overall is YOLO v9, with the highest overall accuracy of 86.1%.