• Title/Summary/Keyword: YNbO$_4$

Search Result 14, Processing Time 0.02 seconds

Optimization of Growth Medium and Fermentation Conditions for the Production of Laccase3 from Cryphonectria parasitica Using Recombinant Saccharomyces cerevisiae

  • Jeong, Yong-Seob;Sob, Kum-Kang;Lee, Ju-Hee;Kim, Jung-Mi;Chun, Gie-Taek;Chun, Jeesun;Kim, Dae-Hyuk
    • Mycobiology
    • /
    • v.47 no.4
    • /
    • pp.512-520
    • /
    • 2019
  • Statistical experimental methods were used to optimize the medium for mass production of a novel laccase3 (Lac3) by recombinant Saccharomyces cerevisiae TYEGLAC3-1. The basic medium was composed of glucose, casamino acids, yeast nitrogen base without amino acids (YNB w/o AA), tryptophan, and adenine. A one-factor-at-a-time approach followed by the fractional factorial design identified galactose, glutamic acid, and ammonium sulfate, as significant carbon, nitrogen, and mineral sources, respectively. The steepest ascent method and response surface methodology (RSM) determined that the optimal medium was (g/L): galactose, 19.16; glutamic acid, 5.0; and YNB w/o AA, 10.46. In this medium, the Lac3 activity (277.04 mU/mL) was 13.5 times higher than that of the basic medium (20.50 mU/mL). The effect of temperature, pH, agitation (rpm), and aeration (vvm) was further examined in a batch fermenter. The best Lac3 activity was 1176.04 mU/mL at 25 ℃, pH 3.5, 100 rpm, and 1 vvm in batch culture.

Mineralogy and Mineral-chemistry of REE Minerals Occurring at Mountain Eorae, Chungju (충주 어래산 일대에서 산출하는 희토류 광물의 광물학적 및 광물화학적 특성)

  • You, Byoung-Woon;Lee, Gill Jae;Koh, Sang Mo
    • Economic and Environmental Geology
    • /
    • v.45 no.6
    • /
    • pp.643-659
    • /
    • 2012
  • The Chungju Fe-REE deposit is located in the Kyemyeongsan Formation of the Ogcheon Group. The Kyemyeongsan Formation includes meta-volcanic rocks and pegmatite hosted REE deposit which show different kind of REE-containing minerals. The meta-volcanic rocks hosted REE deposits' main REE minerals are allanite, zircon, apatite, and sphene, whereas the pegmatite hosted REE deposits is mainly composed of fergusonite, and karnasurtite, zircon, thorite. The meta-volcanic rock hosted major REE mineral is allanite as the form of aggregation and contains 23.89-29.19 wt% TREO (Total Rare Earth Oxide), 4.71-9.92 wt% $La_2O_3$, 11.30-14.33 wt% $Ce_2O_3$, 0.11-0.29 wt% $Y_2O_3$, 0.15-0.94 wt% $ThO_2$, as a formula of (Ca, Y, REE, Th)$_{2.095}$(Mg, Al, Ti, Mn, $Fe^{3+})_{2.770}(SiO_4)_{2.975}(OH)$. Accompanying REE in a coupled substitution for $Ca^{2+}$ (M1 site) and $Al^{3+}-Fe^{2+}$ (M2 site) leads to a large chemical variety. Due to the allanite's high contents of Fe, it belongs to Ferrialanite. The pegmatite hosted deposit's domi-nant REE mineral is fergusonite as prismatic or subhedral grains associated with zircon, fluorite and karnasurtite. Geochemical composition of the fergusonite($YNbO_4$) suggests substitution of Y-REE and Y-Th in A-site, and Nb-Ta-Ti in B-site, furthermore the proportion of $Y_2O_3$ and $Nb_2O_5$ is oddly 1:1.5 comparing to the ideal ratio 1:1 and Nb is higher than Y, also A-site Y actively substitutes with REE. Karnasurtite in pegmatite variously ranges 9.16-22.88 wt% $Ce_2O_3$, 2.15-9.16 wt% and $La_2O_3$, 0.44-10.8 wt% $ThO_2$, as a calculated formula (Y, REE, Th, K, Na, Ca)$_{1.478}(Ti, Nb)_{1.304}$(Mg, Al, Mn, $Fe^{3+})_{0.988}$(Si, P)$_{1.431}O_7(OH)_4{\cdot}3H_2O$. Firstly the 870-860 Ma is the initial age of the supercontinent Rhodinia dispersal and subsequent A-1 type volcanism, which contains Fe, REE, and HFS(High Field Strength elements; Nb, Zr, Y etc.) elements in Fe-rich meta-volcanic rocks dominant Kyemyeongsan Formation, might mineralized allanite. Another synthesis is that regional metamorphism at late Paleozoic 300-280 Ma(Cho et al., 2002) might cause allanite mineralization. Also pegmatite REE mineralization highly related to the granite intrusion over the Chungju area in Jurassic(190 Ma; Koh et al., 2012). Otherwise above all, A-1 type volcanism at the same time of the Kyemyeongsan Formation development, regional metamorphism and pegmatite, might have caused REE mineralization. Although REE ore bodies display a close spatial association, each ore bodies display temporal distinction, different mineral assemblage and environment of ore formation.

Inactivation of Candida albicans Biofilm by Radachlorin-Mediated Photodynamic Therapy (라다클로린으로 매개된 광역학치료에 의한 백색 캔디다 바이오필름의 비활성)

  • Kwon, Pil Seung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.4
    • /
    • pp.273-278
    • /
    • 2015
  • The purpose of this study was to evaluate the in-vitro efficacy of PDT using red light emitting diode (LED) with Radachlorin for biofilm inhibition of clinical Candida albicans isolates. The suspensions containing C. albicans at $9{\times}10^8CFU/mL$ were prepared on yeast nitrogen base containing 5% glucose. The biofilm formation was grown for 3 h after seeding suspensions each 100 ul on a 96-well plate and then supernatant was discarded. Each well was treated with $0.39{\mu}g/mL$ from $50{\mu}g/mL$ concentrations of Radachlorin on adherent biofilm. After a 30-minute incubation, light was irradiated for 30, 60, or 90 minutes using the following light source of wavelength 630 nm LED, at energy densities of 14, 29, and $43J/cm^2$. Afterwards, all supernatant was removed and dried. Adherent cells were stained with safranin O and dried. The cell viability was measured using a microplate reader at 490 nm. Also, a fluorescent signal on C. albicans was observed by saturation of a photosensitizer. In conclusion, a significant inhibition of 72.5% was observed to C. albicans on biofilm at the Radachlorin dose of $50{\mu}g/mL$ with 630 nm LED. The Photosensitizer (Radachlorin) was adequate at 30 minuttes for C. albicans. Overall, the results showed that inhibition of biofilm formation was Radachlorine dose-dependent. The results suggest that PDT, using Radachlorin with 630 nm LED, is able to decrease biofilm formation of C. albicans.