• Title/Summary/Keyword: YCbCr 색공간

Search Result 22, Processing Time 0.023 seconds

Skin Color Region Segmentation using classified 3D skin (계층화된 3차원 피부색 모델을 이용한 피부색 분할)

  • Park, Gyeong-Mi;Yoon, Ga-Rim;Kim, Young-Bong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.8
    • /
    • pp.1809-1818
    • /
    • 2010
  • In order to detect the skin color area from input images, many prior researches have divided an image into the pixels having a skin color and the other pixels. In a still image or videos, it is very difficult to exactly extract the skin pixels because lighting condition and makeup generate a various variations of skin color. In this thesis, we propose a method that improves its performance using hierarchical merging of 3D skin color model and context informations for the images having various difficulties. We first make 3D color histogram distributions using skin color pixels from many YCbCr color images and then divide the color space into 3 layers including skin color region(Skin), non-skin color region(Non-skin), skin color candidate region (Skinness). When we segment the skin color region from an image, skin color pixel and non-skin color pixels are determined to skin region and non-skin region respectively. If a pixel is belong to Skinness color region, the pixels are divided into skin region or non-skin region according to the context information of its neighbors. Our proposed method can help to efficiently segment the skin color regions from images having many distorted skin colors and similar skin colors.

A Road Luminance Measurement Application based on Android (안드로이드 기반의 도로 밝기 측정 어플리케이션 구현)

  • Choi, Young-Hwan;Kim, Hongrae;Hong, Min
    • Journal of Internet Computing and Services
    • /
    • v.16 no.2
    • /
    • pp.49-55
    • /
    • 2015
  • According to the statistics of traffic accidents over recent 5 years, traffic accidents during the night times happened more than the day times. There are various causes to occur traffic accidents and the one of the major causes is inappropriate or missing street lights that make driver's sight confused and causes the traffic accidents. In this paper, with smartphones, we designed and implemented a lane luminance measurement application which stores the information of driver's location, driving, and lane luminance into database in real time to figure out the inappropriate street light facilities and the area that does not have any street lights. This application is implemented under Native C/C++ environment using android NDK and it improves the operation speed than code written in Java or other languages. To measure the luminance of road, the input image with RGB color space is converted to image with YCbCr color space and Y value returns the luminance of road. The application detects the road lane and calculates the road lane luminance into the database sever. Also this application receives the road video image using smart phone's camera and improves the computational cost by allocating the ROI(Region of interest) of input images. The ROI of image is converted to Grayscale image and then applied the canny edge detector to extract the outline of lanes. After that, we applied hough line transform method to achieve the candidated lane group. The both sides of lane is selected by lane detection algorithm that utilizes the gradient of candidated lanes. When the both lanes of road are detected, we set up a triangle area with a height 20 pixels down from intersection of lanes and the luminance of road is estimated from this triangle area. Y value is calculated from the extracted each R, G, B value of pixels in the triangle. The average Y value of pixels is ranged between from 0 to 100 value to inform a luminance of road and each pixel values are represented with color between black and green. We store car location using smartphone's GPS sensor into the database server after analyzing the road lane video image with luminance of road about 60 meters ahead by wireless communication every 10 minutes. We expect that those collected road luminance information can warn drivers about safe driving or effectively improve the renovation plans of road luminance management.