• 제목/요약/키워드: YBCO coated conductor (CC)

검색결과 53건 처리시간 0.024초

YBCO CC와 BSCCO Tape의 적층에 따른 자화손실 특성비교 (Comparison Magnetization Losses of the multi-stacked YBCO Coated conductor and the BSCCO tapes)

  • 임형우;이희준;차귀수;이지광
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제7권3호
    • /
    • pp.13-16
    • /
    • 2005
  • Multi-stacked HTS tapes are needed to conduct large current in the power application. In this paper magnetization losses of the multi-stacked YBCO coated conductor and the BSCCO tape have been measured and compared. Magnetization losses of single tape, 2-stacked, 3-stacked and 4-stacked HTS tapes have been presented in this paper. Multi-stacked tapes have been fabricated using face-to-face type stacking method. Measurements of magnetization loss were performed under various stacked of external magnetic field to consider the anisotropic characteristics of HTS tapes. Test results show that loss density per unit volume decreased for both YBCO coated conductors and BSCCO tapes when the stacking number of tapes is increased. As the external magnetic field decreased, the ratio of decrement has risen because the full penetration magnetic field(Bp) of the multi-stacked tape is larger than that of the single tape.

YBCO CC 적층 및 BSCCO tape 적층선재에서 수직자화 손실 값을 이용한 임의 방향 자화손실 평가 (Magnetization Loss Characteristics at Arbitrary Directional Magnetic Field by Perpendicular Magnetization Loss in YBCO CC and BSCCO Stacked Conductors)

  • 이지광;임형우;박명진;차귀수
    • 전기학회논문지
    • /
    • 제56권2호
    • /
    • pp.282-288
    • /
    • 2007
  • Magnetization loss of high temperature superconductoring BSCCO tape and YBCO coated conductor(YBCOCC) is most important issue in the development of superconducting power devices. In this paper, the measured results of magnetization losses under various angles of external magnetic field in BSCCO tape stacked conductors and YBCO CC stacked conductors are presented and compared with each other. Also, we present the compared results of magnetization losses measured at arbitrary reaction magnetic fields and analyzed with perpendicular magnetic field components of those. The results show that magnetization losses of YBCO CC single and stacked conductors agree well with the analyzed value by it's perpendicular magnetic field component, but BSCCO single and stacked conductors are not.

YBCO CC을 사용한 초전도전원장치의 요소특성 해석 (Characteristic analysis of components of a high temperature superconducting power supply using YBCO coated conductor)

  • 윤용수;조대호;박동근;양성은;김호민;정윤도;배덕권;고태국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제11권3호
    • /
    • pp.40-45
    • /
    • 2009
  • Many superconductor applications such as MRI and SMES must be operated in persistent current mode to eliminate the electrical ohmic loss. This paper presents the characteristic analysis of the high temperature superconducting (HTS) power supply made of YBCO coated conductor (CC). In this research, we have manufactured the HTS power supply to charge the 0.73 mH HTS double-pancake magnet made of YBCO CC. Among the all design parameters, the heater triggerring time and magnet applying time were the most important factors for the best performance of the HTS power supply. In this paper, three-dimensional simulation through finite element method (FEM) was used to study the heat transfer in YBCO CC and the magnetic field of the magnetic circuit. Based upon these results, the final operational sequence could be determined to generate the pumping current. In the experiment, the maximum pumping current reached about 16 A.

대전류용 초전도 연속전위도체의 외부자장 인가방향에 따른 자화손실 특성 (Angular Dependency of Magnetization Losses in Continuously Transposed Coated Conductors for Large Current Applications)

  • 한병욱;김우석;이지광;이세연;박상호;김영일;최경달
    • 전기학회논문지
    • /
    • 제59권1호
    • /
    • pp.51-56
    • /
    • 2010
  • AC loss is main issue for power applications using YBCO coated conductor. The striated YBCO CC(Coated Conductor) has been proposed by several researchers to decrease a magnetization loss. A continuously transposed coated conductor (CTCC), suggested by our research group before, could be very useful for lower magnetization loss of large current power applications. In this paper, an AC loss reduction effect by the stack, striation and transposition of YBCO CCs under a time varying external magnetic field. To estimate the reduction effects for perpendicular magnetization loss, several CTCC samples were prepared and tested. Also, we measured angular dependency of magnetization losses of various CTCC samples.

Coated conductor에서 magneto-optical image와 scanning hall probe를 이용한 flux profile의 측정 및 분석 (Measurement and Analysis of the Flux Profiles of the Coated Conductors using Magneto-optical Image and Scanning Hall Probe)

  • 이효연;곽기성;이준규;유재은;염도준
    • Progress in Superconductivity
    • /
    • 제11권2호
    • /
    • pp.128-134
    • /
    • 2010
  • The magnetic flux profiles in SmBCO and YBCO coated conductors(CC) in the presence of the external field were comparatively investigated by magneto-optic image and scanning hall probe measurements. The current distributions calculated by using the inversion method from measured field profiles show that the decrease of current densities near the edges of SmBCO CC is more significant than those of YBCO CC. Through the comparison of the numerical analysis based on Kim's critical state model and the Brandt and Indenbom's solution, we found that this feature is related to their different field dependant properties of the critical current densities.

SmBCO Coated Conductor의 교류손실 측정 (Measurement of AC Loss in SmBCO Coated Conductor)

  • 박명진;김우석;이지광;오상수;하홍수;김호섭;고락길;유상임;문승현;최경달
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제10권1호
    • /
    • pp.52-56
    • /
    • 2008
  • According to the improvement of HTS conductor, HTS tapes which have the high current capacity have been recently researched in several nations. For large power application, AC loss is the most important issue in the development of AC superconducting power devices because it is closely related to the system operation efficiency. In 1st generation wire of HTS conductor, BSCCO, AC loss is too large to use for power application. Also, It is well known in recently years that YBCO CC, the 2nd generation wire, has also too much AC loss to apply to AC power devices. There are many trials to develop the new HTS wire having the low AC loss around the world. In this research, we present the measurment result of magnetization losses in SmBCO coated conductors. We measured the magnetization loss generated by perpendicularly exposed external magnetic field and compared with the analytic value of the strip model. Also, we presented the results compared with measured magnetization loss of an YBCO coated conductor.

YBCO Coated Conductor의 과전류 특성해석 (Analysis of Over-current Characteristics in YBCO Coated Conductor)

  • 이찬주;남관우;강형구;고태국;석복렬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.693-694
    • /
    • 2006
  • In order to develop a high temperature superconducting(HTS) coil for the fault current limiter(FCL), the over-current characteristics in YBCO coated conductor(CC) with Ni-W alloy substrate are analyzed. The HTS wire is wound by bifilar winding method for resistive current limitation and it is operated in 65K sub-cooled nitrogen. In order to analyze the resistance and the temperature characteristics of the CC wire, an analysis program is developed considering all the composition materials except the buffer layer. Using this program, the temperature rise, the resistance development and the current limitation of CC are calculated depending on the applied voltage and the stabilizer materials. According to the analysis results, under the temperature restriction of 300K, the maximum voltage per meter is determined as 40V/m if the stabilizer is $25{\mu}m$ thick stainless steel at each side. Finally, the wire length needed for the distribution level HTS FCL is estimated.

  • PDF

BSCCO Tape 선재와 YBCO CC의 외부자장 각도에 따른 자화손실 특성비교 (Comparison of Magnetization Losses in BSCCO Tape and YBCO CC at Arbitrary Direction of External Magnetic Field)

  • 이지광;임형우;박명진;차귀수
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권12호
    • /
    • pp.586-591
    • /
    • 2005
  • Magnetization loss of high temperature superconductoring BSCCO tape and YBCO coated conductor(YBCO CC) is most important issue in the development of superconducting power devices. In this paper, the measured results of magnetization losses in BSCCO tape and YBCO CC are presented and compared with each other. Measurements of magnetization losses are performed under various angles of external magnetic field to consider the anisotropic characteristics of YBCO CC. Also, we present the compared results of magnetization losses measured at arbitrary directional magnetic fields and analyzed with perpendicular magnetic field components of those. The results show that magnetization loss of YBCO CC agree well with the analyzed value by it's perpendicular magnetic field component, but BSCCO tape is not.

Variation of the Transport Property in Lap-Jointed YBCO Coated Conductor Tapes with Tension and Bending Deformation

  • Dizon, John Ryan C.;Bonifacio, Rolly;Park, Sung-Taek;Shin, Hyung-Seop
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제9권4호
    • /
    • pp.11-15
    • /
    • 2007
  • In practical applications of HTS tapes for electric devices such as coils and power cables, the jointing of HTS tapes is inevitable even though long length tapes have recently been achieved. The critical current, $I_c$, degradation behaviors with tensile and bending deformations were investigated in commercially available YBCO coated conductor tapes. When the V-I relationship was measured at the jointed section of the lap-jointed YBCO CC tapes, the resistance at the joint decreased with increasing joint length. The critical load for 95% $I_c$ retention were determined for the IBAD and RABiTS YBCO tapes and they were 175 and 355N, respectively. Fracture occurred at the unjointed part which represents strong copper lamination and solder jointing. The electro-mechanical properties of lap-jointed CC tapes depended on the properties of single tapes. The V-I behavior under bending strain was similar with the tensile case.