• Title/Summary/Keyword: YBCO coated conductor

Search Result 218, Processing Time 0.033 seconds

Effect of the thickness of CeO$_2$ buffer layer on the YBCO coated conductor

  • Dongqi Shi;Ping Ma;Ko, Rock-Kil;Kim, Ho-Sup;Ha, Hong-Soo;Chung, Jun-Ki;Kyu-Jeong, Song;Park, Chan;Moon, Seung-Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.4
    • /
    • pp.1-4
    • /
    • 2004
  • Three group samples with difference thickness of $CeO_2$ capping layer deposited by PLD were studied. Among them, one group $CeO_2$ films were deposited on stainless steel tape coated with IBAD- YSZ and $CeO_2$ buffer layer ($CeO_2$/IBAD-YSZ/SS); other two groups of $CeO_2 YSZ Y_2O_3$multi-layer were deposited on NiW substrates for fabrication of YBCO coated conductor through RABiTS approach. The pulsed laser deposition (PLD) and DC magnetron sputtering were employed to deposit these buffer layers. On the top of buffer layer, YBCO film was deposited by PLD. The effect of thickness of $CeO_2$ film on the texture of $CeO_2$ film and critical current density ($J_c$) of YBCO film were analyzed. For the case $CeO_2$ on $CeO_2$/IBAD-YSZ/SS, there was a self-epitaxy effect with the increase of $CeO_2$ film. For $YSZ/Y_2O_3$ NiW which was deposited by PLD or DC magnetron sputtering, there is not self-epitaxy effect. However, the capping layer of $CeO_2$ film deposited by PLD improved the quality of buffer layer for $YSZ/Y_2O_3$ which was deposited by DC magnetron sputtering, therefore increased the $J_c$ of YBCO film.

Investigation of the superconducting properties of YBCO coated conductor based on LTSLHPM

  • Park, H.Y.;Park, S.K.;Ri, H.C.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.1
    • /
    • pp.1-5
    • /
    • 2013
  • We transformed the shape of a YBCO sample with striation to reduce hysteresis and ac losses. And we chose several points to analyze in detail and visualized superconducting properties like critical transition temperature, distribution of the magnetic field, distribution of the current density and hysteresis in a non-destructive manner based on Low Temperature Scanning Laser Hall Probe Microscopy (LTSLHPM) to examine the homogeneity of the sample.

Measurement of Critical Currents of Striated YBCO Coated Conductors (분할형 YBCO CC의 임계전류 측정방법)

  • Han, Byung-Wook;Lee, Se-Yeon;Kim, Young-Il;Kim, Woo-Seok;Lee, Ji-Kwang;Park, Chan;Choi, Kyeong-Dal
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.633-634
    • /
    • 2008
  • 본 논문에서는 안정화 층이 없는 YBCO CC(Coated Conductor)의 YBCO층을 임의의 수로 분할한 경우에 대하여 전기적인 특성을 알아보기 위해 각 소선의 임계전류 값을 측정하는 방법을 제안하였다. 안정화 층이 없음으로 통전 중 주울 열에 의한 선재의 소손을 막기 위해 전류를 펄스파 형태로 인가하여 측정하였으며, 선형적으로 전류를 인가하는 측정 방법에 의한 결과와 비교하였다. 결과적으로 안정화층이 없는 경우의 전기적 특성 측정을 위해서는 본 논문에서 제안한 방법이 우수함을 보였다.

  • PDF

Angular Dependance of Magnetization Loss in Striated YBCO Coated Conductors with a External Magnetic Field (분할형 YBCO CC의 외부자장 인가각도에 따른 자화손실)

  • Byun, Sang-Beom;Lee, Kang-Jun;Park, Sang-Ho;Kim, Woo-Seok;Lee, Ji-Kwang;Park, Chan;Choi, Kyeong-Dal
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.635-636
    • /
    • 2008
  • 현재 고온 2세대 YBCO CC(Coated Conductor) 초전도 선재를 사용하여 초전도 전력기기를 제작하게 되면 BSCCO 선재보다 많은 전류를 인가할 수 있지만, 자화 손실도 더 많이 발생하게 된다. 본 논문에서는 폭 12 mm YBCO CC선재를 이용하여 자화 손실을 줄일 수 있는 몇 개의 샘플을 제작하고, 먼저 각 샘플에 대해 외부에서 수직으로 (${\theta}=90^{\circ}$) 가해지는 자장 값에 대한 자화 손실을 측정하였다. 그 후에 측정값을 이용하여 임의 방향으로 가해지는 자장 값들에 대한 자화 손실을 계산하고, 측정한 값과 비교하여 자화 손실의 패턴을 확인하였다.

  • PDF

$I_c$ Degradation Behavior in YBCO Coated Conductors under Torsional Strain (YBCO 박막도체의 비틀림 변형률에 따른 임계전류 열화거동)

  • Shin, Hyung-Seop;Dizon, John Ryan C;Kim, Tae-Young;Ko, Rock-Kil;Oh, Sang-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.93-94
    • /
    • 2006
  • The $I_c$ degradation behavior of YBCO CC tapes due to torsional deformation has been investigated. Particularly, the influence of torsion angle on the $I_c$ in HTS tapes was examined at 77K (self-field). At low torsional angles or shear strains, the $I_c$ degradation was small and gradual. Also, a good consistency of the $I_c$ degradation behaviors was found along the longitudinal direction under torsion when multiple voltage terminals were adopted for investigating the homogeneity of the $I_c$ degradation.

  • PDF

A Characteristic Analysis of Heater Triggered Persistent Current System with 2G High Tc Superconducting Tape (차세대 고온초전도 선재를 이용한 영구전류시스템의 히터트리거 특성 해석)

  • Park, Dong-Keun;Kang, Hyoung-Ku;Yang, Seong-Eun;Ahn, Min-Cheol;Yoon, Yong-Soo;Yoon, Kyung-Yong;Lee, Sang-Jin;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1228-1230
    • /
    • 2005
  • This paper deals with design of heater trigger switching in a persistent current system(PCS) by finite element method(FEM) analysis of YBCO coated conductor(CC) tape. Most promising superconducting wire is YBCO coated conductor tape in these days for its high n value and critical current independency from external magnetic field. It is expected to be used many superconducting application such as fault current limiter and cable etc. The superconducting magnet which is operated in persistent current mode in SMES, NMR, MRI and MAGLEV has many advantages such as a high uniformity of a magnetic field and reducing a thermal loss. A PCS system consists of magnet power supply (MPS) which energized current to a magnet, heater, a coated conductor tape for switching, and superconducting magnet. In this paper, the characteristic of thermal quench of the YBCO CC tape and BSCCO tape by heater trigger analyzed by FEM. And optimal length of heater is calculated by temperature and time analysis. This heater trigger analysis is expected to be a basic concept of PCS application design.

  • PDF

Variation of Lattice Constant in Ni-W and Ni-W-Cu Alloys for YBCO Coated Conductor (YBCO 초전도 박막 선재용 Ni-W 및 Ni-W-Cu 합금의 격자상수 변화)

  • Kim Min-Woo;Jung Kyu-Dong;Jun Byung-Hyuk;Kim Hyoung-Seop;Kim Chan-Joong
    • Progress in Superconductivity
    • /
    • v.7 no.1
    • /
    • pp.64-68
    • /
    • 2005
  • We fabricated Ni-based alloy substrates for YBCO coated conductor using powder metallurgy. Tungsten and copper were selected as alloy elements due to their mutual solubility to the base element of nickel. The alloying elements were mixed with nickel using ball milling and dried in air. The powder mixtures were packed in a rubber mold, cold isostatic pressed 200 MPa and made into rods. The compacted rods were sintered at $1150^{\circ}C$ for 6 hours for densification. It was confirmed by neutron diffraction experiment that W and Cu atoms made complete solid solution with Ni. Lattice constant of nickel alloy increased by $0.004{\AA}$ for 1at. $\%$ W in Ni-W alloy, $0.0006{\AA}$ for 1 at. $\%$ Cu in Ni-W-Cu alloy.

  • PDF