• Title/Summary/Keyword: Y-protein

Search Result 31,661, Processing Time 0.049 seconds

Effect of Dietary Protein and Lipid Levels on the Growth and Body Composition of Juvenile Long Snout Bullhead Leiocassis longirostris Gunther (배합사료의 단백질 및 지질 함량이 종어(Leiocassis longirostris Gunther) 치어의 성장과 체성분에 미치는 효과)

  • Lim, Sang Gu;Han, Hyoung Kyun;Bang, In Chul;Choi, Jin;Lee, Sang-Min
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.4
    • /
    • pp.377-383
    • /
    • 2013
  • We ran a feeding trial to determine optimal dietary protein and lipid levels for growth of juvenile long snout bullhead Leiocassis longirostris Gunther. Eight experimental diets (P20L7, P20L14, P30L7, P30L14, P40L7, P40L14, P50L7 and P50L14) were formulated to contain 20%, 30%, 40% or 50% protein combined with either 7% or 14% lipid. Three replicate groups of fish (mean mass: 3.9 g/fish) were fed one of the experimental diets ad libitum for 8 weeks. Survival of fish fed the P20L14 diet was lower than that of fish fed the P40L14, P50L7 and P50L14 diets. Growth of fish fed diets containing 7% lipid increased with increasing protein level (up to 50% protein); growth of fish fed diets containing 14% lipid increased with increasing protein level (up to 30% protein). The feed efficiency of fish fed a diet with 50% protein and 7% lipid was higher than that of other groups. Whole body moisture and lipid contents were affected by dietary lipid level but not by dietary protein level. The crude lipid contents of fish fed 14% lipid diets were higher than those fed 7% lipid diets across all protein levels (other than the 50% level). Thus, under our experimental conditions, an increase in dietary protein level improved growth and feed efficiency of fish; a diet containing 50% protein with 7% lipid was optimal for growth and effective feed utilization in juvenile long snout bullhead.

Protective Immunity of Pichia pastoris-Expressed Recombinant Envelope Protein of Japanese Encephalitis Virus

  • Kwon, Woo-Taeg;Lee, Woo-Sik;Park, Pyo-Jam;Park, Tae-Kyu;Kang, Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.11
    • /
    • pp.1580-1587
    • /
    • 2012
  • Japanese encephalitis virus (JEV) envelope (E) protein holds great promise for use in the development of a recombinant vaccine. Purified recombinant E (rE) protein may be useful for numerous clinical applications; however, there are limitations in using the Escherichia coli expression system for producing high-quality rE protein. Therefore, in this study, the yeast expression system was used to generate the rE protein. For protein production using the yeast system, the full-length JEV E gene was cloned into Pichia pastoris. SDS-PAGE and immunoblotting analysis demonstrated that the rE protein had a molecular mass of 58 kDa and was glycosylated. The predicted size of the mature unmodified E protein is 53 kDa, suggesting that post-translational modifications resulted in the higher molecular mass. The rE protein was purified to greater than 95% purity using combined ammonium sulfate precipitation and a SP-Sepharose Fast Flow column. This purified rE protein was evaluated for immunogenicity and protective efficacy in mice. The survival rates of mice immunized with the rE protein were significantly increased over that of Hyphantria cunea nuclear polyhedrosis virus E protein (HcE). Our results indicate that the rE protein expressed in the P. pastoris expression system holds great promise for use in the development of a subunit vaccine against JEV.

Emulsifying Properties of Whey Protein Hydrolysates (유청 단백질 가수분해물의 유화특성)

  • 양희진;이수원
    • Food Science of Animal Resources
    • /
    • v.23 no.1
    • /
    • pp.63-69
    • /
    • 2003
  • This experiment was carried out to study changes in solubility and emulsifying properties of whey protein. Whey protein hydrolysates were obtained from tryptic hydrolysis of whey protein concentrate at pH 8.0 and 37$^{\circ}C$ for 6 hours. Emulsifying activity of whey protein hydrolysate was highest at 4 hours of hydroysis and at 5.50% of DH. During hydrolysis of whey protein concentrate with trypsin, ${\alpha}$-lactalbumin was not easily broken down. But ${\beta}$-lactoglobulin was hydrolysed rapidly from the early stage of hydrolysis, producing several low molecular weight peptides, which have to participate in increasing emusifying activity. The solulbility of hydyolysates tended to increase depending on hydrolysis time; however, there was a gradual decrease after 5 hours. The hydrolysate had a minimum solubility near the isoelectric point range (pH 4∼5). The more hydrolysed the whey protein concentrates, the more soluble they are near the pl. They aye also more soluble above pH 6. Emulsifying activity of hydrolysates showed similar results to solubility. Creaming stability gradually increased when hydrolysis increased, increasing rapidly above pH 8 after 4 hours of hydrolysis.

Protein Contents During Oocyte Development and Some Characteristics of Egg-Specific Protein in Lucilia illustris (연두금파리의 난세포성숙에 따른 단백질의 변화와 난특이성단백질의 특성)

  • Lee, Jong-Jin;Man-Young Choi;Hee-Kwon Lee
    • Korean journal of applied entomology
    • /
    • v.34 no.2
    • /
    • pp.140-146
    • /
    • 1995
  • Changes in protein content during oocyte development was measured and egg-specific protein was characterized from the eggs in Lucilia illustris. During normal development ovarian protein was rapidly increased at 72hr and reached maximum at 96hr after a protein meal, when the eggs were fully matured. Purified protein from the ovaries by gel filtration of DEAE-cellulose an Sephacryl S-200 was loaded on 7.5% native polyacrylamide gel electrophoresis and identified at ${R}_{f}$ 0.4 as egg-specific protein, which has a mol. wt of 110,000. A total of 13 amino acids in th egg-specific protein was identified and expecially asparagine, glutamic acid, and tyrosine were highly concentrated. Five fatty acids were also identified. It is suggested that there is a specific protein in the eggs of L. illustris except yolk protein synthesized and secreted by fat body.

  • PDF

Effect of Cowpea Precipitate Flour Protein on Characteristics of Gel (동부앙금의 단백질 함량이 Gel화 특성에 미치는 영향)

  • 김경애;이선영;정난희;전은례
    • Korean journal of food and cookery science
    • /
    • v.13 no.5
    • /
    • pp.627-634
    • /
    • 1997
  • The purpose of this study is to examine the effect of protein content on the physicochemical properties, gelatinized characteristics and textural properties of cowpea precipitate gels stored for 24 hrs and 48 hrs at room temperature. The contents of protein, total fat, and ash ranged from 0.35%∼1.38%, 0.54%∼0.64%, and 0.21%∼0.25%, respectively. The X-ray diffraction patterns were all Ca-type, showing no difference according to the protein content. Protein content did not make any difference in the blue values of cowpea precipitate. The blue value of cowpea precipitate powder as protein content was decreased. The water-binding capacity of cowpea precipitate powder increased as the protein content increased. Swelling power and solubility of cowpea precipitate powder increased as protein content decreased. The transmittance of cowpea precipitate powder was not different according to the protein content. The initial pasting temperature of cowpea precipitate powder by differential scanning calorimetry (DSC) and rapid visco analyser (RVA) showed no differences according to the protein content. In sensory evaluation, the color and clarity of cowpea precipitate gels stored for 24 hrs and 48 hrs at room temperature as the protein content increased, and the hardness, cohesiveness, springiness, acceptability were greater when the gels were stored for 48 hrs. Instrumental analyses using a rheometer showed that the hardness, gumminess, and chewiness of cowpea precipitate gels stored for 24 hrs, which was increased as the high protein content increased. For the gels stored for 48 hrs, all other factors are significantly different except cohesiveness as the protein content increased.

  • PDF

Finding and Characterization of Viral Nonstructural Small Protein in Prospect Hill Virus Infected Cell

  • Nam, Ki-Yean;Chung, Dong-Hoon;Choi, Je-Won;Lee, Yun-Seong;Lee, Pyung-Woo
    • The Journal of Korean Society of Virology
    • /
    • v.29 no.4
    • /
    • pp.221-233
    • /
    • 1999
  • Prospect Hill Virus (PHV) is the well known serotype of hantavirus, a newly established genus in family Bunyaviridae. Extensive studies have upheld the original view of PHV genetics with three genes such as nucleocapsid (N) protein, envelope proteins (G1, G2) and RNA dependent RNA polymerase. In this study, we report the existence of additional gene that is encoded in an overlapping reading frame of the N protein gene within S genome segment of PHV. This gene is expected to encode a nonstructural small (NSs) protein and it seems to be only found in PHV infected cell. The presence and synthesis of NSs protein could be demonstrated in the cell infected with PHV using anti-peptide sera specific to the predicted amino acid sequence deduced from the second open reading frame. Ribosomal synthesis of this protein appears to occur at AUG codon at the 83rd base of S genome segment, downstream of N protein initiation codon. This protein is small in size (10.4 KDa) and highly basic in nature. The expression strategy of NSs protein appears that a signal mRNA is used to translate both N and NSs protein in PHV infected cell. 10 KDa protein in virus infected cell lysates can bind to mimic dsRNA. This fact strongly suggests that NSs protein may be involved in virus replication on late phase of viral life cycle.

  • PDF

Measurement of Molecular Weight and Heating Properties of Korean White Ginseng Protein (백삼 단백질의 가열특성과 분자량 측정)

  • 박상욱
    • The Korean Journal of Food And Nutrition
    • /
    • v.17 no.1
    • /
    • pp.66-71
    • /
    • 2004
  • This study was carried out to elucidate the molecular weight and the heating properties of Korean white ginseng protein by CM-cellulose column chromatography and electrophoresis. Thermostable protein contents were 0.17% in xylem-pith and 0.15% in cortex-epidermis of tap root by 90min of heating. The contents of thermostable protein were decrease after 90min of heating. By Electrophoresis, seven bands of 66, 45, 29, 24, 22, 20, 12kD were observed up to 30min of heating, but the band of 22kD was disappeared after 60min. of heating. The cationic protein content of thermostable protein fraction (28.24%) was higher than the anion protein content(0.80%). The molecular weight of thermostable protein fractions were 66kD, 55kD, 36kD and those of thermolabile protein fractions were 29kD, 24kD, 22kD, 20kD.

System Design and Implementation for the Efficient Management and Automatic Update of Protein-Protein Interaction Data. (단백질 상호작용 데이터의 효율적 관리와 자동 갱신을 위한 시스템 설계와 구현)

  • Kim, Ki-Bong
    • Journal of Life Science
    • /
    • v.18 no.3
    • /
    • pp.318-322
    • /
    • 2008
  • This paper deals with an efficient management and automatic update sub-system for WASPIFA (Web-based Assistant System for Protein-protein Interaction and Function Analysis) system that had been developed in the past and now provides the comprehensive information on protein-protein interaction and protein function. Protein interacting data has increased exponentially, so that it costs enormous time and effort. In other words, it is actually impossible to manually update and manage an analysis system based on protein interacting data. Even though there exists a good analysis system, it could be useless if it was able to be updated timely and managed properly. Unfortunately, in most cases, biologists without professional knowledge on their analysis systems have to cope with a great difficulty in running them. In this respect, the efficient management and automatic update subsystem of protein interacting and its related data has been developed to facilitate experimental biologists as well as bioinformaticians to update and manage the WASPIFA system.

Effect of dietary protein and lipid level on growth, feed utilization, and muscle composition in golden mandarin fish Siniperca scherzeri

  • Sankian, Zohreh;Khosravi, Sanaz;Kim, Yi-Oh;Lee, Sang-Min
    • Fisheries and Aquatic Sciences
    • /
    • v.20 no.5
    • /
    • pp.7.1-7.6
    • /
    • 2017
  • A feeding trial was designed to assess the effects of dietary protein and lipid content on growth, feed utilization efficiency, and muscle proximate composition of juvenile mandarin fish, Siniperca scherzeri. Six experimental diets were formulated with a combination of three protein (35, 45, and 55%) and two dietary lipid levels (7 and 14%). Each diet was fed to triplicate groups of fish ($8.3{\pm}0.1g$) to apparent satiation for 8 weeks. The results showed that growth performance in terms of weight gain (WG) and specific growth rate (SGR) increased with increasing dietary protein level from 35 to 55% at the same dietary lipid level. At the same dietary lipid content, WG and SGR obtained with diets containing 55% protein was significantly higher than those obtained with diets containing 45 and 35% protein. No significant effect on growth rate was found when the dietary level of lipid was increased from 7 to 14%. While the levels of protein and lipid in the diets had no significant effect on feed intake, other nutrient utilization efficiency parameters including daily protein intake (DPI), feed efficiency (FE), and protein efficiency ratio (PER) showed a similar trend to that of growth rates, with the highest values obtained with diets containing 55% protein. Muscle chemical composition was not significantly affected by the different dietary treatments for each dietary lipid or protein level tested. These findings may suggest that a practical diet containing 55% protein and 7% lipid provides sufficient nutrient and energy to support the acceptable growth rates and nutrient utilization of mandarin fish juveniles.

A Visualization and Inference System for Protein-Protein Interaction (단백질 상호작용 추론 및 가시화 시스템)

  • Lee Mi-Kyung;Kim Ki-Bong
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.12
    • /
    • pp.1602-1610
    • /
    • 2004
  • As various genome projects have produced enormous amount of biosequence data, functional sequence analysis in terms of tile nucleic acid and protein becomes very significant. In functional genomics and proteomics, the functional analysis of each individual gene and protein remains a big challenge. Contrary to traditional studies, which regard proteins as not components of a whole protein interaction network but individual entities, recent studies have focused on examining functions and roles of each individual gene and protein in view of a whole life system. In this regard, it has been recognized as an appropriate method to analyze protein function on the basis of synthetic information of its interaction and domain modularity. In this context, this paper introduces the PIVS (Protein-protein interaction Inference & Visualization System), which predicts the interaction relationship of input proteins by taking advantage of information on homology degree, domain modules which input sequences contain, and protein interaction relationship. The information on domain modules can increase the accuracy of the function and interaction relationship analysis in terms of the specificity and sensitivity.