• Title/Summary/Keyword: Y-pipe

Search Result 5,725, Processing Time 0.033 seconds

Finite Element Analysis on the Stress and Displacement Characteristics of Oil Pipe (오일 파이프의 응력 및 변형거동특성에 관한 유한요소해석)

  • Kim, Chung-Kyun;Cho, Seung-Hyun
    • Tribology and Lubricants
    • /
    • v.25 no.6
    • /
    • pp.374-380
    • /
    • 2009
  • This paper presents the stress and displacement characteristics of oil pipe using the finite element analysis. Displacement in axial direction and von Mises stress of a pipe were analyzed with three design factors, which are the pipe thickness, the corrugation pitch and the corrugation height, under uniform oil pressure. The FE computed results are presented between a conventional round pipe and a rectangular pipe, which is manufactured in this study. The computed FE results show that maximum displacement in axial direction and von Mises stress of pipe are increased linearly as the oil pressure increases. Also, they are increased linearly as the corrugation pitch, corrugation height and pipe thickness increases. von Mises stress of a rectangular pipe at the edge increases sharply compared with that of a conventional round pipe. Therefore, the strength of rectangular pipe is superior to that of a conventional round pipe.

Experimental Study of Characteristics on Double Heat Exchange Pipe Used Separation Type Air-Conditioner (분리형 에어컨용 2중 열교환 배관 특성에 관한 실험적 연구)

  • Kim, J.D.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.31-37
    • /
    • 2006
  • In this study, the ability for the function of double pipe inserted liquid pipe with small diameter in the gas pipe with large diameter for the circulating of liquid of high temperature and high pressure and low temperature and low pressure at the same time is presented. And in this double pipe, liquid pipe of high temperature and pressure is used to connect condenser and expansion valve and gas pipe of low temperature is used to connect evaporator and compressor. Also, when liquid refrigerant of high temperature and gas refrigerant of low temperature is circulated by reversed flow in the double pipe. The contribution of liquid gas heat exchange pipe is studied by comparison of the effect of heat transfer by temperature difference when liquid pipe and gas pipe is installed separately.

  • PDF

Static displacement and elastic buckling characteristics of structural pipe-in-pipe cross-sections

  • Sato, M.;Patel, M.H.;Trarieux, F.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.3
    • /
    • pp.263-278
    • /
    • 2008
  • Structural pipe-in-pipe cross-sections have significant potential for application in offshore oil and gas production systems because of their property that combines insulation performance with structural strength in an integrated way. Such cross-sections comprise inner and outer thin walled pipes with the annulus between them fully filled by a selectable thick filler material to impart an appropriate combination of properties. Structural pipe-in-pipe cross-sections can exhibit several different collapse mechanisms and the basis of the preferential occurrence of one over others is of interest. This paper presents an elastic analyses of a structural pipe-in-pipe cross-section when subjected to external hydrostatic pressure. It formulates and solves the static and elastic buckling problem using the variational principle of minimum potential energy. The paper also investigates a simplified formulation of the problem where the outer pipe and its contact with the filler material is considered as a 'pipe on an elastic foundation'. Results are presented to show the variation of elastic buckling pressure with the relative elastic modulus of the filler and pipe materials, the filler thickness and the thicknesses of the inner and outer pipes. The range of applicability of the simplified 'pipe on an elastic foundation' analysis is also presented. A brief review of the types of materials that could be used as the filler is combined with the results of the analysis to draw conclusions about elastic buckling behaviour of structural pipe-in-pipe cross-sections.

Evaluation of Failure Behavior of a Pipe Containing Circumferential Notch-Type Wall Thinning (원주방향 노치형 감육부를 가진 배관의 손상거동 평가)

  • Kim, Jin-Weon;Park, Chi-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1295-1302
    • /
    • 2003
  • In order to evaluate a failure behavior of pipe with notch-type wall thinning, the present study performed full-scale pipe tests using the 102mm, Schedule 80 pipe specimen simulated notch- and circular-type thinning defects. The pipe tests were conducted under the conditions of both monotonic and cyclic bending moment at a constant internal pressure of 10 MPa. From the results. of experiment the failure mode, load carrying capacity, deformation ability, and fatigue life of a notch-type wall thinned pipe were investigated, and they were compared with those of a circular-type wall thinned pipe. The failure mode of notched pipe was similar to that of circular-type thinned pipe under the monotonic bending load. Under the cyclic bending load, however, the mode was clearly distinguished with variation in the shape of wall thinning. The load carrying capacity of a pipe containing notch-type wall thinning was about the same or slightly lower than that of a pipe containing circular-type wall thinning when the thinning area was subjected to tensile stress, whereas it was higher than that of a pipe containing circular-type thinning defect when the thinning area was subjected to compressive stress. On the other hand, the deformation ability and fatigue life of a notch-type wall thinned pipe was lower than those of a circular-type wall thinned pipe.

A Study on the Strength Change of Used Pipe Support (1) (재사용 파이프서포트의 내력변화 연구 (1))

  • Paik, Shin-Won;Ro, Min-Lae
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.93-97
    • /
    • 2004
  • Slab formwork consists of sheathing, stringer, hanger and shore. There are several types of adjustable individual shores. In constructions site, pipe supports are usually used as shores. The strength of a pipe support is decreasing as it is frequently being used at the construction site. In this study, 2857 pipe supports were bought to fine out the strength change of used pipe support and unused pipe supports according to aging. Among these pipe supports, 2337 pipe supports were lent to the construction companies free of charge. Compressive strength was measured by knife edge test and plate test at each 3 month. Test results show that the strength of unused pipe supports almost equaled to the strength of new pipe supports until 191 days, but the strength of used pipe supports at 191 days was lower than the strength of new pipe supports. So, the strength of used pipe supports at 191 days was not satisfied the specification of KS F 8001. According to these results, it shows that attention has to be paid to formwork design using used pipe supports. Therefore, the paresent study results will be able to provide a firm base to design slab formwork and test the performance of used temporary structure and prevent formwork collapses.

Integrated Expansion Analysis of Pipe-In-Pipe Systems

  • Choi, Han-Suk;Do Chang-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.5 s.72
    • /
    • pp.9-14
    • /
    • 2006
  • This paper presents an analytical method, application of expansion, mechanical design, and integrated expansion design of subsea insulated pipe-in-pipe (PIP) systems. PIP system consists of a flowline and a casing pipe for the transport of high temperature and high pressure product from the subsea wells. To prevent heat lass from the fiowline, insulation material is applied between the pipes. The fiawline pipe and the casing pipe have mechanical connections through steel ring plate (water stops) and bulkheads. Pipeline expansion is defined by temperature, internal pressure, soil resistance, and interaction force between the flowline and the casing pipe. The results of the expansion analysis, the mechanical design of connection system of the two pipes and tie-in spool design are integrated for the whole PIP system.

Study on the possible application of Vibrated and Rolled reinforced concrete pipe to vertical.crossing water distribution system (진동 및 전압 철근 콘크리트관의 종.횡단배수관 적용성 검토에 관한 연구)

  • Park Do-Kyong;Lee Myung-Kue;Yang Keek-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.6 no.2 s.20
    • /
    • pp.111-117
    • /
    • 2006
  • In case of carrying out vortical crossing water distribution system in expressways or general roads construction, VR(Vibrated and Rolled reinforced concrete) pipes are restricted because of their specification of reinforced spun concrete pipe or on-site made pipe. Therefore, in order to apply VR pipes to those constructions, through the structural behavior experiments of the pipes, VR pipes are compared and verified with reinforced spun concrete pipe and the results are obtained as the following. From the experiments and analyses of Pipe Stiffness(PS) of the pipes, cracking loading is approved to satisfy the KS regulations. Through a direct load test, the cracking loading strength and the maximum load test of VR pipe is larger compared with reinforced spun concrete pipe. Particularly, even if side weld is thin, there is no little change in the cracking strength of VR pipe. The results of the direct load test analysis show that the structural behavior of VR pipe is equivalent or higher compared with reinforced spun concrete pipe in performance and VR pipe could be used as the water distribution pipe for roads. In this study, through pipe stiffness, direct load test and load teat on earth, reinforced spun concrete pipe and VR pipe are compared. And as a result, the structural behavior of VR pipe is comprehensively excellent. From the structural behavior tests, VR pipe's section shows more thickness and has uniform characteristics so that VR pipe is considered more favorable than reinforced spun concrete pipe.

Effect of Phosphate-based Inhibitors on Pipe Corrosion of Drinking Water Supply (상수도 배급수관망의 부식방지를 위한 인산염계 방청제 적용에 관한 연구)

  • 이윤진;남상호
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.3
    • /
    • pp.65-71
    • /
    • 2003
  • The injection concentration of corrosion inhibitor increases under the pH 7, temperature of 2$0^{\circ}C$, and alkalinity of 35 mg/l (as CaCO$_3$), the corrosion rate gradually decreased. When the corrosion inhibitor of 10 mg/l is injected, the corrosion rate for carbon steel pipe, galvanized steel pipe, and copper pipe reduces for 37, 66 and 61 % respectively that it is more efficient on galvanized steel pipe and copper pipe. As a result of examination of corrosion rate at pH 6, 7, and 8 when injecting 10 mg/l of corrosion inhibitor under the conditions of 2$0^{\circ}C$ in water temperature and 35 mg/l (as CaCO$_3$) in alkalinity, the efficiency of the corrosion inhibitor increases as the pH increases. For carbon steel pipe, it does not show much a difference with the change of the pH condition, but galvanized steel pipe and copper pipe clearly show the corrosion rate depending on the change of the pH condition. The efficiency of corrosion inhibitor is low as the concentration of residual chlorine is high, but it does not show a great influence at 0.4 mg/l or less. For each pipe type, in the case of carbon steel pipe, the range of increase of corrosion speed following the residual chloride is higher than the other pipe types. In the meantime, the effect following the residual chlorine in copper pipe is low.

An Experimental Study of Liquid.Gas Heat Exchange Pipe Inserted Capillary Tube for Room Air-Conditioner (모세관 삽입 룸 에어컨용 액.가스 열교환 배관에 관한 실험적 연구)

  • Kim, Jae-Dol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.702-708
    • /
    • 2006
  • This study shows the experimental characteristics of the double pipe inserted liquid pipe with small diameter in the gas pipe with large diameter for circulating of a liquid of high temperature, pressure and a gas of low temperature, pressure at the same time. So the functions of pipe and pipe's expansion and heat transfer are presented simultaneously. In the result, the temperature of gas refrigerant at the inlet of compressor increased about $5^{\circ}C$ by the heat transfer with liquid refrigerant in case of the double pipe. And liquid gas refrigerant which the temperature at the inlet of evaporator decreased about $3^{\circ}C$ comparing with the existing type flows into an evaporator COP of the double pipe increased about $7{\sim}10%$ comparing with that of the conventional pipe. And the noise of the double pipe at capillary tube is less than that of the conventional type about 3dB. Consequently. it is convinced the superiority of the double pipe in the heat loss and soundproofing aspect.

Effects of vessel-pipe coupled dynamics on the discharged CO2 behavior for CO2 sequestration

  • Bakti, Farid P.;Kim, Moo-Hyun
    • Ocean Systems Engineering
    • /
    • v.10 no.3
    • /
    • pp.317-332
    • /
    • 2020
  • This study examines the behaviors and properties of discharged liquid CO2 from a long elastic pipe moving with a vessel for the oceanic CO2 sequestration by considering pipe dynamics and vessel motions. The coupled vessel-pipe dynamic analysis for a typical configuration is done in the frequency and time domain using the ORCAFLEX program. The system's characteristics, such as vessel RAOs and pipe-axial-velocity transfer function, are identified by applying a broadband white noise wave spectrum to the vessel-pipe dynamic system. The frequency shift of the vessel's RAO due to the encounter-frequency effect is also investigated through the system identification method. Additionally, the time histories of the tip-of-pipe velocities, along with the corresponding discharged droplet size and Weber numbers, are generated for two different sea states. The comparison between the stiff non-oscillating pipe with the flexible oscillating pipe shows the effect of the vessel and pipe dynamics to the discharged CO2 droplet size and Weber number. The pipe's axial-mode resonance is the leading cause of the fluctuation of the discharged CO2 properties. The significant variation of the discharged CO2 properties observed in this study shows the importance of considering the vessel-pipe motions when designing oceanic CO2 sequestration strategy, including suitable sequestration locations, discharge rate, towing speed, and sea states.