• Title/Summary/Keyword: Y-coupling

Search Result 6,745, Processing Time 0.034 seconds

FEM-BEM iterative coupling procedures to analyze interacting wave propagation models: fluid-fluid, solid-solid and fluid-solid analyses

  • Soares, Delfim Jr.
    • Coupled systems mechanics
    • /
    • v.1 no.1
    • /
    • pp.19-37
    • /
    • 2012
  • In this work, the iterative coupling of finite element and boundary element methods for the investigation of coupled fluid-fluid, solid-solid and fluid-solid wave propagation models is reviewed. In order to perform the coupling of the two numerical methods, a successive renewal of the variables on the common interface between the two sub-domains is performed through an iterative procedure until convergence is achieved. In the case of local nonlinearities within the finite element sub-domain, it is straightforward to perform the iterative coupling together with the iterations needed to solve the nonlinear system. In particular, a more efficient and stable performance of the coupling procedure is achieved by a special formulation that allows to use different time steps in each sub-domain. Optimized relaxation parameters are also considered in the analyses, in order to speed up and/or to ensure the convergence of the iterative process.

Analysis of Coupling Windows of the Dielectric Resonator Filter (유전체 공진기 필터의 결합창 특성해석)

  • 김병욱;윤두일;윤상원
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.1
    • /
    • pp.101-105
    • /
    • 2002
  • In this paper, the coupling windows of the dielectric resonator filter have been analyzed. The coupling factor which has been used to characterize the coupling window is represented by closed form expressions. The deviation of the coupling factor as the size of coupling window has been compared between calculated by presented method and measured ones. There are very closed agreements. The presented method can be applied not only to design dielectric resonator but also to design varactor tuned dielectric resonator filter so as that the passband bandwidth is constant within tuned ranges.

Analysis of Coupling Loss with Size and Material in the KSTAR PF Superconducting Coils (KSTAR PF 초전도자석의 크기 및 재료에 따른 결합손실 특성 분석)

  • Lee, H.J.;Chu, Y.;Lee, S.;Park, Y.M.;Park, H.T.;Oh, Y.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.3
    • /
    • pp.1-5
    • /
    • 2009
  • It is important to predict AC loss in $Nb_3Sn$ and NbTi cable-in-conduit-conductor (CICC) reliably for the design and operation of large superconducting coils. The hysteresis loss in the superconducting filaments and coupling loss within strands and among strands in a cable or composite are dominant ac losses in superconducting magnets. The coupling loss in a superconductor can be characterized by identifying the coupling constant time $n{\tau}$. To reduce the coupling loss, all the strands (superconductor and Cu) in KSTAR (Korea Superconducting Tokamak Advance Research) are chromium plated with thickness of $l{\pm}0.5{\mu}m$. The ac losses of PF1, PF5 and PF6 coils has been measured by calorimetric method while applying trapezoidal current pulses with various ramp rate from 0.5 kA/s to 2 kA/s. The coupling time constants for $Nb_3Sn$ coils are $25{\sim}55$ ms and the values are not co-related with the coil size, the time constants for NbTi coil is 30 ms.

Polymeric digital optical switch with a coupling region modified for optimum mode coupling (모드 결합을 최적화 하기 위해 수정된 결합 영역을 갖는 전기광학 폴리머 디지탈 광스위치)

  • 이상신;신상영
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.245-249
    • /
    • 1997
  • An electro-optic polymer digital optical switch with a coupling region modified for optimum coupling is designed and demonstrated. Its branch waveguide is fabricated by reactive ion etching. Then, the modified coupling region is adiabatically introduced along the propagation direction from the branching point of the two waveguides, and it is implemented by photobleaching after the device fabrication. The structure of the modified coupling region and its refractive index profiles are designed to optimize and mode coupling in the Y-branch waveguide. Therefore, the switching performance of the device was shown to be enhanced with a fixed device length. The measured drive voltage is reduced by more than 30 percents, and the crosstalk is also improved by about 4~6 dB.

  • PDF

On the Design Method of a Haptic Interface Controller with Virtual Coupling

  • Kim, Keehoon;W.K. Chung;Y. Youm
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.25.5-25
    • /
    • 2001
  • A haptic interface can be a passive system with virtual coupling as a filter virtual coupling has been designed for satisfying passivity. However, it affects transparency of haptic interface as well as stability. This paper suggests new design criterion of a haptic interface controller by considering transparency. As a result, sampling time and the range of impedance or admittance should be considered as well as virtual coupling for desired performance of hapticdisplay. And experiments show that the suggested design criterion can be applied successfully for desired performance.

  • PDF

Shear mechanism of steel fiber reinforced concrete deep coupling beams

  • Li, Kou;Zhao, Jun;Ren, Wenbo
    • Structural Engineering and Mechanics
    • /
    • v.73 no.2
    • /
    • pp.143-152
    • /
    • 2020
  • Deep coupling beams are more prone to suffer brittle shear failure. The addition of steel fibers to seismic members such as coupling beams can improve their shear performance and ductility. Based on the test results of steel fiber reinforced concrete(SFRC) coupling beams with span-to-depth ratio between 1.5 and 2.5 under lateral reverse cyclic load, the shear mechanism were analyzed by using strut-and-tie model theory, and the effects of the span-to-depth ratio, compressive strength and volume fraction of steel fiber on shear strengths were also discussed. A simplified calculation method to predict the shear capacity of SFRC deep coupling beams was proposed. The results show that the shear force is mainly transmitted by a strut-and-tie mechanism composed of three types of inclined concrete struts, vertical reinforcement ties and nodes. The influence of span-to-depth ratio on shear capacity is mainly due to the change of inclination angle of main inclined struts. The increasing of concrete compressive strength or volume fraction of steel fiber can improve the shear capacity of SFRC deep coupling beams mainly by enhancing the bearing capacity of compressive struts or tensile strength of the vertical tie. The proposed calculation method is verified using experimental data, and comparative results show that the prediction values agree well with the test ones.

The Steel Coupling Beam-Wall Connections Strength

  • Park, Wan-Shin;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.135-145
    • /
    • 2006
  • In high multistory reinforced concrete buildings, coupled shear walls can provide an efficient structural system to resist horizontal force due to wind and seismic effects. Coupled shear walls are usually built over the whole height of the building and re laid out either as a series of walls coupled by beams and/or slabs or a central core structure with openings to accommodate doors, elevators walls, windows and corridors. A number of recent studies have focused on examining the seismic response of concrete, steel, and composite coupling beams. However, since no specific equations are available for computing the bearing strength of steel coupling beam-wall connections, it is necessary to develop such strength equations. There were carried out analytical and experimental studies to develop the strength equations of steel coupling beam-connections. Experiments were conducted to determine the factors influencing the bearing strength of the steel coupling beam-wall connection. The results of the proposed equations were in good agreement with both test results and other test data from the literature. Finally, this paper provides background for design guidelines that include a design model to calculate the bearing strength of steel coupling beam-wall connections.

A novel vertical directional coupler with polarization independent very short coupling lengths (편광에 무관한 매우 짧은 결합 길이를 가지는 새로운 수직 방향성 결합기)

  • 정병민;김부균
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.4
    • /
    • pp.359-364
    • /
    • 2003
  • We propose a novel vertical directional coupler with polarization independent very short coupling lengths using the double-sided deep-ridge waveguide structure which could be implemented using double-sided process to polarization insensitive deep-ridge waveguide structures and investigate the effect of various structure parameters on the coupling length. Variation of coupling length for the variation of the waveguide width is smaller than that for the variation of the core thickness. Coupling length decreases as the inner cladding layer thickness and the core thickness decrease. The waveguide width with the polarization independent coupling length decreases as the inner cladding layer thickness decreases for the same core thickness and the core thickness decreases for the same inner cladding layer thickness.

Implementation of the Electric Cauterizer with the Hole for Acupuncture (유침 구멍이 구비된 전기뜸기의 구현)

  • Jo, Bongkwan;He, Yunsheng
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.18 no.3
    • /
    • pp.217-223
    • /
    • 2014
  • Objectives This study is on the implementation of the electric cauterizer with the hole for acupuncture to achieve the superposition effect of acupuncture-moxibustion therapies. Methods In this paper, we especially made a hole across the heat terminal of the electric cauterizer for acupuncture. Before the cauterization, the doctor treats a patient with needle. And after acupuncture, the heat terminal is to be superposed upon the needle along the hole to add the cauterization. Results There are 2 coupling methods that the heat terminal is to be superposed with the needle; one is the top-coupling and the other is side-coupling. The top-coupling means that the heat terminal is to be superposed upon the needle along the top of the needle, and side-coupling means that the heat terminal is to be superposed to the needle along the side of the needle. Conclusion This study was aimed to implement the electric cauterizer with the hole for acupuncture to achieve the superposition effect of acupuncture-moxibustion therapies. Not electric acupuncture but manual acupuncture is adopted. The electric cauterizer generates the heat $38{\sim}45^{\circ}C$. This heat is safe for skin not to burn. The electric cauterizer constitutes the smokeless moxa- pad which effects the skin DDS.

Computational Modeling of the Bearing Coupling Section of Machine Tools (공작기계 베어링 결합부의 전산 모델링)

  • Kim, Hyun-Myung;Seo, Jae-Wu;Park, Hyung-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.10
    • /
    • pp.1050-1055
    • /
    • 2012
  • The bearing coupling section of machine tools is the most important factor to determine their static/dynamic stiffness. To ensure the proper performance of machine tools, the static/dynamic stiffness of the rotating system has to be predicted on the design stage. Various parameters of the bearing coupling section, such as the spring element, node number and preload influence the characteristics of rotating systems. This study focuses on the prediction of the static and dynamic stiffness of the rotating system with the bearing coupling section using the finite element (FE) model. MATRIX 27 in ANSYS has been adopted to describe the bearing coupling section of machine tools because the MATRIX 27 can describe the bearing coupling section close to the real object and is applicable to various machine tools. The FE model of the bearing couple section which has the sixteen node using MATRIX 27 was constructed. Comparisons between finite element method (FEM) predictions and experimental results were performed in terms of the static and dynamic stiffness.