• Title/Summary/Keyword: Xylogone sphaerospora

Search Result 6, Processing Time 0.016 seconds

Selection of Effective Fungicides Against Xylogone sphaerospora, a Fungal Pathogen of Cultivated Mushroom, Ganoderma lucidum (영지 노랑병 방제에 효과적인 살균제의 선발)

  • 최경자;이종규;우성희;조광연
    • Korean Journal Plant Pathology
    • /
    • v.14 no.5
    • /
    • pp.491-495
    • /
    • 1998
  • A fungal disease of the cultivated mushroom, Ganoderma lucidum, caused by Xylogone sphaerospora was epidemic throughout all cultivation areas in Korea which caused a lot of yield losses in the mushroom production. For controlling the disease, the screening of effective fungicides against the pathogenic fungus were conducted. Thirty seven commercially available fungicides were tested for their inhibitory activities on potato dextrose agar media supplemented with these fungicides at various concentrations. Twenty one fungicides significantly inhibited mycelial growth of the pathogen, Xylogone sphaerospora, but 16 fungicides had no inhibitory effect. Among these 21 fungicides, 17 fungicides also inhibited mycelial growth of Ganoderma lucidum as well, but imazalil, procymidone, triforine, and vinclozolin had no inhibitory effects. However, vinclozolin showed no inhibitory effect on mycelial growth of the mushroom even at the concentration of 50 $\mu\textrm{g}$/ml vinclozolin solution for 2 hours, and then the pathogen was inoculated. After two month-cultivation of the mushroom, over 90% of logs treated with vinclozolin without pathogen inoculation produced fruiting bodies. However, fruiting bodies were not produced form the logs inoculated with the pathogen, but not treated with vinclozolin. Fifty seven percent of logs. which were pre-treated with vinclozolin and then inoculated with the pathogen produced fruiting bodies. Based on the results, vinclozolin is effective for the control of yellow disease of the Ganoderma lucidum caused by Xylogone sphaerospora.

  • PDF

Xylogone sphaerospora, a New Fungal Pathogen of Cultivated Ganoderma lucidum (영지의 새로운 병원성진균 Xylogone sphaerospora)

  • Lee, Jong-Kyu;Choi, Gyung-Ja;Cho, Kwang-Yun;Oh, Se-Jong;Park, Jeong-Sik
    • The Korean Journal of Mycology
    • /
    • v.24 no.4 s.79
    • /
    • pp.246-254
    • /
    • 1996
  • Since the mid of 1980's, cultivation area and production of Ganoderma lucidum have been increased annually in Korea. However, the presence of a fungal disease has become a major limiting factor in the cultivation of Ganoderma lucidum, causing a serious economic loss. The present study was carried out to isolate and identify the pathogenic fungus to Ganoderma lucidum. Several fungi isolated from the wood logs showing typical symptoms were tested whether they are pathogenic to Ganoderma lucidum or not by cross-pairing culture method, flask inoculation method, and wood log inoculation method. The pathogenic fungus produced ascomata. Mature ascomata was spherical, dark, thick-walled, $45{\sim}95\;{\mu}m$ diameter. Asci were thin-walled, evanescent when mature, disintegrate early. Ascospores were spherical, hyaline, glaborous, thick-walled, refractive, $3.6{\sim}4.3\;{\mu}m$ in size. Conidiophores soon became abundantly septate and broke up into arthrospores, which are cylindrical, $3{\sim}6\;{\mu}m$ long and $3{\sim}4\;{\mu}m$ wide. Based on the observations under dissecting microscope, light microscope and scanning electron microscope, teleomorph and anamorph of the pathogenic fungus were identified as Xylogone sphaerospora Von Arx & Nilsson and Sporendonema purpurascens (Bonordon) Mason & Hughes, respectively. X. sphaerospora is first reported as a pathogenic fungus of Ganoderma lucidum.

  • PDF

Purification of Xylogone sphaerospora ${\beta}$-mannanase and Growth Activity of Bifidobacterium spp. by Konjac Glucomannan Hydrolysates (Xylogone sphaerospora 유래 ${\beta}$-mannanase 정제 및 Konjac Glucomannan 가수분해 올리고당의 중합도별 Bifidobacterium spp.에 대한 증식활성)

  • Lee, Hee-Jung;Park, Gwi-Gun
    • Applied Biological Chemistry
    • /
    • v.51 no.3
    • /
    • pp.159-163
    • /
    • 2008
  • Xylogone sphaerospora ${\beta}$-mannanase was purified by Sephadex G-100 column chromatography. The specific activity of the purified enzyme was 8.44 units/ml protein, representing an 56.27-folds purification of the original crude extract. The final preparation thus obtained showed a single band on SDS-polyacrylamide gel electrophoresis. The molecular weight was determined to be 42kDa. Konjac glucomannan was hydrolyzed by the purified ${\beta}$-mannanase, and then the hydrolysates was separated by activated carbon column chromatography. The main hydrolysates were composed of D.P. (Degree of Polymerization) 3 and 4 glucomannooligosaccharides. For elucidate the structure of D.P 3 and 4 glucomannooligosaccharides, sequential enzymatic action was performed. D.P 3 and 4 were identified as M-G-M and M-M-G-M (G- and M- represent glucosidic and mannosidic link-ages). To investigate the effects of konjac glucomannooligosaccharides on in vitro growth of Bifido-bacterium longum, B. bifidum, B. infantis, B. adolescentis, B. animalis, B. auglutum and B. breve. Bifidobacterium spp. were cultivated individually on the modified-MRS medium containing carbon source such as D.P. 3 and D.P. 4 glucomannooligosaccharides, respectively. B. longum and B. bifidum grew up 3.9-fold and 2.8-fold more effectively by the treatment of D.P. 4 glucomannooligosaccharides, compared to those of standard MRS medium. Especially, D.P. 4 was more effective than D.P. 3 glucomannooligosaccharide on the growth of Bifidobacterium spp.

Sixteen New Records of Ascomycetes from Crop Field Soil in Korea

  • Adhikari, Mahesh;Kim, Sangwoo;Kim, Hyun Seung;Lee, Hyang Burm;Lee, Youn Su
    • The Korean Journal of Mycology
    • /
    • v.44 no.4
    • /
    • pp.271-288
    • /
    • 2016
  • The present study reports 16 species of Ascomycota that were previously unknown in Korea, namely Acremonium cellulolyticus (KNU14-25), Acremonium zonatum (KNU14-15), Chaetomium madrasense (KNU14-9), Cladosporium silenes (KNU 14-18-1), Humicolopsis cephalosporioides (KNU15-3), Leptosphaerulina chartarum (KNU14-16), Paecilomyces marquandii (KNU14-8), Paecilomyces tenuis (KNU14-18-2), Paraphaeosphaeria sporulosa (KNU15-2), Penicillium rubidurum (KNU14-12), Pochonia suchlasporia (KNU15-6), Sporothrix inflata (KNU15-8), Thielavia hyrcaniae (KNU15-1), Thielavia terricola (KNU14-23-1), Xylogone sphaerospora (KNU15-7), and Zopfiella longicaudata (KNU15-5). These fungal species were isolated from soil samples collected from various regions of Korea and identified based on their morphological characteristics and rDNA internal transcribed spacer sequence data. Full descriptions and illustrations for each species are provided.

Screening of Hemicellulose Oligosaccharides and Preparation of the Recipe for Modified MRS Medium by the Replacement of Carbon Source (Hemicellulose계열 올리고당 탐색 및 탄소원 대체에 의한 장내세균 생육활성용 신규 MRS배지의 조제)

  • Lee, Hee-Jung;Park, Gwi-Gun
    • Journal of Applied Biological Chemistry
    • /
    • v.51 no.6
    • /
    • pp.272-276
    • /
    • 2008
  • Purification and some properties of Xylogone sphaerospora ${\beta}$-mannanase were reprevious previous paper. Locust bean gum galactomannan was hydrolyzed by the purified ${\beta}$-mannanase, and then the hydrolysates was separated by activated carbon column chromatography. The main hydrolysates were composed of D.P. (Degree of Polymerization) 4 and 6 galactosyl mannooligosaccharides. For elucidate the structure of D.P 4 and 6 galactosyl mannooligosaccharides, sequential enzymatic action was performed. D.P 4 and 6 were identified as ${Gal^2}{Man_3}\;(6^2-mono-O-{\alpha}-D-galactopyranosyl-4-O-{\beta}-D-mannotriose)$ and ${Gal^2}{Man_5}\;(6^2-mono-O-{\alpha}-D-galacto- pyranosyl-4-O-{\beta}-D-mannopentaose)$. To investigate the effects of locust bean gum galactosyl mannooligosaccharides on in vitro growth of Bifidobacterium longum, B. bifidum, B. infantis, B. adolescentis, B. animalis, B. auglutum and B. breve. Bifidobacterium spp. were cultivated individually on the modified-MRS medium containing carbon source such as D.P. 4 and D.P. 6 galactosyl mannooligosaccharides, respectively. B. longum and B. bifidum grew up to-fold and 6.6-fold more effectively by the treatment of D.P. 6 galactosyl mannooligosaccharides, compared to those of standard MRS medium. Especially, D.P. 6 was more effective than D.P. 4 galactosyl mannooligosaccharide on the growth of Bifidobacterium spp.

Substrate Specificities of ${\alpha}$-Galactosidase from Mortierella sp. (Mortierella sp. 유래 ${\alpha}$-Galactosidase의 기질특이성)

  • Park, Gwi-Gun
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.3
    • /
    • pp.245-251
    • /
    • 2011
  • [ ${\alpha}$ ]Galactosidase was purified from a culture filtrate of Mortierella sp. by CM-sephadex C-50, and subsequent Sephadex G-100 column chromatography. The final preparation thus obtained showed a single band on SDS-polyacrylamide gel electrophoresis. The molecular weight was determined to be 56 kDa. $Gal^3Man^4$ ($6^3$-mono-O-${\alpha}$-D-galactopyranosyl-4-O-${\beta}$-D-mannotetraose), $Gal^{2,3}Man_5$ ($6^{2,3}$-di-O-${\alpha}$-D-galactopyranosyl-4-O-${\beta}$-D-mannopentaose), $Gal_2Man_3$ ($6^2$-mono-O-${\alpha}$-D-galactopyranosyl-4-O-${\beta}$-D-mannotriose), $Gal^2Man_6$ ($6^2$-mono-O-${\alpha}$-D-galactopyranosyl-4-O-${\beta}$-D-mannohexaose) and $Gal^2Man_5$ ($6^2$-mono-O-${\alpha}$-D-galactopyranosyl-4-O-${\beta}$-D-mannopentaose), prepared from 3 types of microbial ${\beta}$-mannnanase, were used as substrates. $Gal^3Man_4$ and $Gal^2Man_3$ had a stubbed ${\alpha}$-galactosyl residue on the $2^{nd}$ and $3^{rd}$ mannose from the reducing end of mannotetraose and mannotriose, thus ${\alpha}$-galactosidase showed a preference for stubbed ${\alpha}$-galactosyl residue. ${\alpha}$-Galactosidase hydrolyzed $Gal^3Man_4$ more rapidly than $Gal^2Man_3$. However, ${\alpha}$-galactosidase hardly acted on $Gal^{2,3}Man_5$, $Gal^2Man_6$ or $Gal^2Man_5$. The enzyme hydrolyzed melibiose to galactose and glucose, raffinose to galactose and sucrose, and also stachyose to galactose and raffinose.