• Title/Summary/Keyword: Xylene

Search Result 777, Processing Time 0.029 seconds

Extradiol Cleavage of Two-ring Structures of Biphenyl and Indole Oxidation by Biphenyl Dioxygenase in Commamonas Acidovorans

  • On, Hwa-Young;Lee, Na-Ri;Kim, Young-Chang;Kim, Chi-Kyung;Kim, Young-Soo;Park, Yong-Keun;Ka, Jong-Ok;Lee, Ki-Sung;Min, Kyung-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.3
    • /
    • pp.264-269
    • /
    • 1998
  • Commamonas acidovorans SMN4 showed wide growth substrate spectra for various aromatic hydrocarbons. Strain SMN4 was able to grow on biphenyl producing a meta-cleavage compound, yellow 2-hydroxy-6-oxophenylhexa-2,4-dienoic acid with a spray of 2,3-dihydroxybiphenyl, while it also grew on catechol, developing yellow 2- hydroxymucoic semialdehyde with a spray of 100 mM catechol. Thus these results indicate that two-ring structures of biphenyl were cleaved by meta-mode in upper and lower pathways. Strain SMN4 metabolized various substituted biphenyl compounds and xylene to the corresponding benzoate derivatives through oxidation of the ring structures. It was clearly shown that biphenyl can be a common inducer in the oxidation of biphenyl and 2,3-dihydroxybiphenyl. Various compounds were examined for their suitability to serve as substrates for indole oxidation, indicating that biphenyl, benzoate, and succinate are quite good inducers of indigo production due to the activity of biphenyl dioxygenase. This results suggest that indigo formation is by means of the combined activities of biphenyl dioxygenase and tryptophanase.

  • PDF

Modeling Human Exposure Levels to Airborne Volatile Organic Compounds by the Hebei Spirit Oil Spill

  • Kim, Jong-Ho;Kwak, Byoung-Kyu;Ha, Min-A;Cheong, Hae-Kwan;Yi, Jong-Heop
    • Environmental Analysis Health and Toxicology
    • /
    • v.27
    • /
    • pp.8.1-8.10
    • /
    • 2012
  • Objectives: The goal was to model and quantify the atmospheric concentrations of volatile organic compounds (VOCs) as the result of the Hebei Spirit oil spill, and to predict whether the exposure levels were abnormally high or not. Methods: We developed a model for calculating the airborne concentration of VOCs that are produced in an oil spill accident. The model was applied to a practical situation, namely the Hebei Spirit oil spill. The accuracy of the model was verified by comparing the results with previous observation data. The concentrations were compared with the currently used air quality standards. Results: Evaporation was found to be 10- to 1,000-fold higher than the emissions produced from a surrounding industrial complex. The modeled concentrations for benzene failed to meet current labor environmental standards, and the concentration of benzene, toluene, orthometa- para-xylene were higher than the values specified by air quality standards and guideline values on the ocean. The concentrations of total VOCs were much higher than indoor environmental criteria for the entire Taean area for a few days. Conclusions: The extent of airborne exposure was clearly not the same as that for normal conditions.

NAPL Removal from Contaminated Soil Using Steam Injection (스팀주입에 의한 토양내 NAPL 제거 실험)

  • Lee, Sang-Il;Jang, Yeon-Su;Kim, Seon-Gi
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.5
    • /
    • pp.459-465
    • /
    • 1997
  • The possibility of NAPL removal from contaminated soil was studied using the steam injection technique. Both single (octane, toluene and xylene) and composite NAPL (gasoline) were used as contaminant. Soils used in this study were Chumunjin fine sand and weathered granitic soil, both of which are commonly found in Korea. Experimental results showed that with 1 pore volume steam injection, the NAPL removal rate was in the range of 66∼78% for sand and 45∼73% for weathered granitic soil. The steam injection technique seems to have high potential for soil remediation with advantages of relatively short operating time and no side-effect. Rise in the background temperature led to the delay of steam condensation and the increase of NAPL mobility, which resulted in the improvement of removal efficiency. In addition, water flooding after steam injection turned out to be a very efficient way of removing NAPL residual in the soil pores.

  • PDF

Exposure Assessment of Volatile Organic Compounds for Workers Handling Rust-preventive Oils (방청유 취급 근로자의 휘발성 유기화합물 노출 평가)

  • Jeong, Yoonkeong;Choi, Sangjun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.1
    • /
    • pp.23-37
    • /
    • 2017
  • Objectives : This study was conducted to evaluate the level of exposure to volatile organic compounds (VOCs) among workers handling rust preventive oils. Methods : A total of 30 bulk samples and 54 personal air samples were collected using diffusive samplers at 22 workplaces handling rust preventive oils in Daegu and Gyongsangbuk-do Province from March to October 2013. We also investigated detailed information on the related work conditions, such as kinds of products, handling methods, local exhaustive ventilation systems, and the status of the wearing personal protective equipment. All bulk samples and air samples were analyzed using gas chromatography mass spectrometry (GC-MS) to identify components to which workers potentially were exposed. Quantitative airborne concentrations of VOCs were confirmed using gas chromatography with flame ionized detectors. Results : In terms of qualitative analyses for the 30 bulk samples, we found carcinogenic, mutagenic and reproductive toxic(CMR) substances such as butane(carcinogenic Group 1A, mutagenic Group 1B), butoxy ethanol(carcinogenic Group 2), cumene (carcinogenic Group 2), ethyl benzene(carcinogenic Group 2), methyl isobutyl ketone(carcinogenic Group 2) and toluene (reproductive toxic, Group 2). As a result of full-shift based personal air samples, eight substances such as n-hexane, n-heptane, octane, nonane, decane, toluene, ethyl benzene and xylene were detected. Among them, n-hexane and n-heptane were detected in all of 54 air samples with $13.13mg/m^3$ and $8.61mg/m^3$ of maximum concentration, respectively. The level of airborne concentration from all of samples were bellow the occupational exposure limit in Korea. Conclusions : Based on the results of this study, workers handling rust preventive oils could be exposed to CMR substances contained in rust preventive oils and n-hexane and n-heptane were found as the most frequent sources of VOC exposure.

Parametric Sensitivity Analysis and Damage Estimation for BLEVE and Fireball (BLEVE와 Fireball의 매개변수 민감도분석 및 피해 산정)

  • Kim Hyung Seok;Kim In Tae;Song Kwang Ho;Ko Jae Wook;Kim In Won
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.3
    • /
    • pp.25-36
    • /
    • 1998
  • Explosion and fires can occur in all segments of chemical and petroleum industries because of complexity of process, usage and storage of flammable and reactive chemicals, and operating conditions of high pressure and temperatures. Especially chemical plants have high possibility of the occurrence of BLEVE(Boiling Liquid Expanding Vapor Explosion)and Fireball. In this study, a computer program was developed for the effect assessment of BLEVE and Fireball. BLEVE was analysed by three explosion models of physical explosion model, isothermal expansion model and adiabatic expansion model and Fireball using solid model. The parametric sensitivity analysis has been done for the models of BLEVE and Fireball. The damage by BLEVE and Fireball of Benzene and Toluene and m-Xylene were estimated.

  • PDF

Evaluation of Visible-light activation of Cu2O-TiO2 (P-N type) Semiconductor Nanomaterials prepared by Ultrasonic-assisted Synthesis (초음파 합성 적용 Cu2O-TiO2 (P-N 타입) 반도체 나노물질의 가시광 활성 평가)

  • Shin, Seung-ho;Choi, Jeong-Hak;Kim, Ji-hoon;Lee, Joon Yeob
    • Journal of Environmental Science International
    • /
    • v.28 no.11
    • /
    • pp.971-981
    • /
    • 2019
  • This study evaluated the photocatalytic oxidation efficiency of volatile organic compounds by $Cu_2O-TiO_2$ under visible-light irradiation. $Cu_2O-TiO_2$ was synthesized by an ultrasonic-assisted method. The XRD result indicated successful p-n type photocatalysts. However, no diffraction peaks belonging to $TiO_2$ were observed for the $Cu_2O-TiO_2$. The Uv-vis spectra result revealed that the synthesized $Cu_2O-TiO_2$ can be activated under visible-light irradiation. The FE-TEM/EDS result showed the formation of synthesized nanocomposites in the commercial P25 $TiO_2$, the undoped $TiO_2$, and $Cu_2O-TiO_2$ and componential analysis in the undoped $TiO_2$ and $Cu_2O-TiO_2$. The photocatalytic oxidation efficiencies of benzene, toluene, ethylbenzene, and o-xylene with $Cu_2O-TiO_2$ were higher than those of P25 $TiO_2$ and undoped $TiO_2$. These results indicate that the prepared $Cu_2O-TiO_2$ photocatalyst can be applied effectively to control gaseous BTEX.

The Effects of Long-Term, Low-Level Exposure to Monocyclic Aromatic Hydrocarbons on Worker's Insulin Resistance

  • Won, Yong-Lim;Ko, Yong;Heo, Kyung-Hwa;Ko, Kyung-Sun;Lee, Mi-Young;Kim, Ki-Woong
    • Safety and Health at Work
    • /
    • v.2 no.4
    • /
    • pp.365-374
    • /
    • 2011
  • Objectives: This study was designed to investigate whether long-term, low-level exposure to monocyclic aromatic hydrocarbons (MAHs) induced insulin resistance. Methods: The subjects were 110 male workers who were occupationally exposed to styrene, toluene, and xylene. One hundred and ten age-matched male workers who had never been occupationally exposed to organic solvents were selected as a control group. Cytokines, which have played a key role in the pathogenesis of insulin resistance, and oxidative stress indices were measured. Assessment of exposure to MAHs was performed by measuring their ambient levels and their urinary metabolites in exposed workers, and the resulting parameters between the exposed group and non-exposed control groups were compared. Results: There was no significant difference in general characteristics and anthropometric parameters between the two groups; however, total cholesterol, fasting glucose, fasting insulin, and homeostasis model assessment of insulin resistance levels were significantly higher in the exposed group. Phenylglyoxylic acid levels showed significant association with tumor necrosis factor-${\alpha}$, total oxidative status, and oxidative stress index via multiple linear regression analysis. Further, there was a negative correlation between methylhippuric acid levels and total anti-oxidative capacity, and there was a significant relationship between MAHs exposure and fasting glucose levels, as found by multiple logistic regression analysis (odds ratio = 3.95, 95% confidence interval = 1.074-14.530). Conclusion: This study indicated that MAHs increase fasting glucose level and insulin resistance. Furthermore, these results suggested that absorbing the organic solvent itself and active metabolic intermediates can increase oxidative stress and cytokine levels, resulting in the changes in glucose metabolism and the induction of insulin resistance.

A Study on the Characteristics of Chemicals in Major Industrial Complexes (주요 산업단지의 화학물질 배출량 특성에 관한 연구)

  • Kim, Hyunji;Im, JiYoung;Yun, Jeonghyeon;Lee, JiHo;Jeon, JunHo;Lee, ChungSoo
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.6
    • /
    • pp.515-523
    • /
    • 2018
  • Objectives: Based on the results of a chemical substance emissions survey, we investigated characteristics of chemical emissions in industrial complexes and used them as basic data for chemical management. Methods: The emissions and characteristics of chemicals by major industrial complexes from 2011 to 2015 were analyzed using the Pollutant Release and Transfer Register homepage. To understand the status of chemical accidents for major chemicals emitted from the industrial complexes, the Chemistry Safety Clearing-house system of the National Institute of Chemical Safety was used. Results: Emissions from the top five industrial complexes accounted for about 30% of total chemical emissions. The chemical emission was the highest in the order of Ulsan Mipo Industrial Complex and Okpo Industrial Complex. The main chemicals emitted were xylene, ethylbenzene, ethyl acetate, toluene, dichloromethane, and others. Carcinogen emissions differed by industrial complex, but ethylbenzene and dichloromethane were the major chemicals for this type of emissions. Conclusion: Recently, the use and emission of chemicals have been continuously increasing. A chemical management plan should be prepared considering the characteristics of industrial complexes and chemical substance emissions.

Controlling Painters' Exposure to Volatile Organic Solvents in the Automotive Sector of Southern Colombia

  • Castano, Belky P.;Ramirez, Vladimir;Cancelado, Julio A.
    • Safety and Health at Work
    • /
    • v.10 no.3
    • /
    • pp.355-361
    • /
    • 2019
  • Background: Painters in the automotive sector are routinely exposed to volatile organic solvents, and the levels vary depending on the occupational health and safety controls enforced at the companies. This study investigates the levels of exposure to organic vapors and the existence of controls in the formal economy sector in southern Colombia. Methods: This is an exploratory study of an observational and descriptive character. An analysis of solvents is conducted via the personal sampling of painters and the analysis of samples using the National Institute for Occupational Safety and Health 1501 method. The amount of solvents analyzed varied according to the budget allocated by the companies. The person in charge of the occupational safety and health management system was interviewed to learn about the exposure controls implemented at the companies. Results: A medium exposure risk for toluene was found in one company. Another presented medium risk for carbon tetrachloride, xylene, ethylbenzene, and n-butanol. The others showed low risk of exposure and that the controls implemented were not sufficient or efficient. Conclusion: These results shed light on the working conditions of these tradespeople. The permissible limits established by Colombian regulations for the evaluated chemical contaminants were not exceeded. However, there were contaminants that exceeded the limits of action. The analysis of findings made it possible to propose improvements in occupational safety and health management systems to allow the optimization of working conditions for painters, prevent the occurrence of occupational diseases, and reduce costs to the country's health system.

Task-based Exposure Assessment among Laboratory workers in Organic Synthesis Laboratories (유기합성실험실 연구자의 단위작업별 노출 평가)

  • Choi, Youngeun;Chu, Yeonhee;Lee, Ikmo;Park, Jeongim
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • Objective: Significant concerns have been raised over chemical exposure and potential health risks such as increased cancer mortality among laboratory workers. The aim of this study was to investigate the overall exposure and unit task exposure levels of researchers in organic synthesis laboratories at universities. Methods: Seventy-seven personal Time-weighted average(TWA) samples and 139 task-based samples from four organic synthesis laboratories at two universities were collected over three days. The concentrations of acetone, chloroform, dichloromethane(DCM), diethyl ether, ethyl acetate, n-hexane, tetrahydrofuran(THF), benzene, toluene, and xylene were determined using the GC-FID. Results: The most frequently used chemicals in the laboratories were acetone, DCM, n-hexane, methanol, and THF. Carcinogens such as benzene, chloroform, and DCM were used in one or more laboratories. The TWA full-shift exposures of researchers to acetone was the highest(ND-59.3 ppm). Benzene was observed above the occupational exposure limit in 18-40% of the samples. The levels of exposure to organic solvents were statistically different by task(p<0.05), while washing task was the highest. Washing was not perceived as a part of the real lab tasks. Rather it was considered as simple dish-washing or experimental preparation and performed in an open sink where exposure to organic solvents was unavoidable. TWAs and task-based concentrations were compared by substance, which suggests that TWA-based assessment could not reflect short-term and high concentration exposures. Conclusions: Laboratory workers may be exposed to various organic solvents at levels of concern. TWA-based measurement alone cannot guarantee holistic exposure assessment among lab workers as their exposures are very dependent on their tasks. Further investigation and characterization for specific tasks and overall chronic exposures will help protect lab workers from unnecessary exposure to chemicals while they perform research.