Browse > Article
http://dx.doi.org/10.5322/JESI.2019.28.11.971

Evaluation of Visible-light activation of Cu2O-TiO2 (P-N type) Semiconductor Nanomaterials prepared by Ultrasonic-assisted Synthesis  

Shin, Seung-ho (Department of Environmental & Public Health, Daegu Health College)
Choi, Jeong-Hak (Department of Environmental Engineering, Catholic University of Pusan)
Kim, Ji-hoon (Department of Environmental & Public Health, Daegu Health College)
Lee, Joon Yeob (Life Environmental R&D Center, Chemtopia Co. Ltd.)
Publication Information
Journal of Environmental Science International / v.28, no.11, 2019 , pp. 971-981 More about this Journal
Abstract
This study evaluated the photocatalytic oxidation efficiency of volatile organic compounds by $Cu_2O-TiO_2$ under visible-light irradiation. $Cu_2O-TiO_2$ was synthesized by an ultrasonic-assisted method. The XRD result indicated successful p-n type photocatalysts. However, no diffraction peaks belonging to $TiO_2$ were observed for the $Cu_2O-TiO_2$. The Uv-vis spectra result revealed that the synthesized $Cu_2O-TiO_2$ can be activated under visible-light irradiation. The FE-TEM/EDS result showed the formation of synthesized nanocomposites in the commercial P25 $TiO_2$, the undoped $TiO_2$, and $Cu_2O-TiO_2$ and componential analysis in the undoped $TiO_2$ and $Cu_2O-TiO_2$. The photocatalytic oxidation efficiencies of benzene, toluene, ethylbenzene, and o-xylene with $Cu_2O-TiO_2$ were higher than those of P25 $TiO_2$ and undoped $TiO_2$. These results indicate that the prepared $Cu_2O-TiO_2$ photocatalyst can be applied effectively to control gaseous BTEX.
Keywords
$Cu_2O-TiO_2$; P-N type photocatalyst; Photocatalytic oxidation efficiency; Visible light;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chen, J., Qiu, F., Xu, W., Cao, S., 2015, Recent progress in enhancing photocatalytic efficiency of $TiO_2$-based materials, Appl. Cata. A, 495, 131-140.   DOI
2 Fagan, R., McCormack, D. E., Dionysiou, D. D., Pillai, S. C., 2016, A Review of solar and visible light active $TiO_2$ photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern, Mat. Sci. Semicon. Proc., 42, 2-14.   DOI
3 Flannigan, D. J., Suslick, K. S., 2005, Plasma formation and temperature measurement during single-bubble cavitation, Nature, 434, 52-55.   DOI
4 Ghows, N., Entezari, M. H., 2012, Sono-stynthesis of core-shell nanocrystal (CdS/$TiO_2$) without surfactant, Ultrason. Sonochem., 19, 1070-1078.   DOI
5 Henderson, M. A., 2011, A Surface science perspective on $TiO_2$ photocatalysis, Surf. Sci. Rep., 66(6), 185-297.   DOI
6 Hosseini-Sarvari, M., Jafari, F., Mohajeri, A., Hassani, N., 2018, $Cu_2O$/$TiO_2$ nanoparticles as visible light photocatalysts concerning C(sp2)-P bond formation, Catal. Sci. Technol., 8, 4044-4051.   DOI
7 Huo, Y., Zhu, J., Li, G., Li, H., 2007, An Active La/$TiO_2$ photocatalyst prepared by ultrasonication-assisted -sol-gel method followed by treatment under supercritical conditions, J. Mol. Catal. A, 278(1-2), 237-243.   DOI
8 Lee, J. Y., Hong, W. H., Kim, W., Park, S. H., Jo, W. K., 2017, Visible light-driven decomposition of ${\alpha}$-pinene and toluene over N and Fe dual-doped one -dimensional titania nanostructures with improved efficiency, Mater. Res. Bull., 94, 313-321.   DOI
9 Jeong, J., Sekiguchi, K., Lee, W., Sakamoto, K., 2005, Photodegradation of gaseous Volatile Organic Compounds (VOCs) using $TiO_2$ photoirradiated by an ozone-producing UV lamp: decomposition character -istics, identification of by-products and watersoluble organic intermediates, J. Photoch. Photobio. A, 169(3), 279-287.   DOI
10 Jo, W. K., Kang, H. J., Kim, K. H., 2012, Application of Light-emitting-diodes to annular-type photocatalytic reactor for removal of indoor-level benzene and toluene, J. Environ. Sci., 21(5), 563-572.
11 Lee, J. Y., Jo, W. K., 2012, Control of methyl tertiary-butyl ether via carbon-doped photocatalysts under visible -Light irradiation, Environ. Eng. Res., 17(4), 179-184.   DOI
12 Li, D., Chien, C., Deora, S., Chang, P., Moulin, E., Lu, J. G., 2011, Prototype of a scalable core-shell $Cu_2O$/$TiO_2$ solar cell, Chem. Phys. Lett., 501, 446-450.   DOI
13 Lin, X., Zhou, R., Zhang, J., Sheng, X., 2010, Preparation and photocatalytic activity of $Cu_2O$ nanoparticles, Mater. Sci.-Pol., 28, 504-511.
14 Luo, Y., Ollis, D. F., 1996, Heterogeneous photocatalytic oxidation of trichloroethylene and toluene mixtures in air: kinetic promotion and inhibition, time-dependent catalyst activity, J. Catal., 163, 1-11.   DOI
15 Singh, R., Pal, B., 2013, Study of excited charge carrier's lifetime for the observed photoluminescence and photocatalyti activity of CdS nanostructures of different shapes, J. Mole. Catal. A, 371, 77-85.   DOI
16 Ochiai, T., Fujishima, A., 2012, Photoelectrochemical properties of $TiO_2$ photocatalyst and its applications for environmental purification, J. Photochem. Photobiol. C, 13, 247-262.   DOI
17 Robert, D., 2007, Photosensitization of $TiO_2$ by $M_xO_y$ and $M_xS_y$ nanoparticles for heterogeneous photocatalysis applications, Catal. Today, 122, 20-26.   DOI
18 Senevirathna, M. K. I., Pitagala, P. K. D. P., Tennakone, K., 2005, Water photoreduction with $Cu_2O$ quantum dots on $TiO_2$ nano-particles, J. Photochem. Photociol. A: Chem., 171, 257-259.   DOI
19 Yang, R., Zhang, Y., Xu, Q., Mo, J., 2007, A mass transfer method for measuring the reaction coefficients of a photocatalyst, Atmos. Environ., 41, 1221-1229.   DOI
20 Van Gerven, T., Mul, G., Moulijn, J., Stankiewicz, A., 2007, A Review of intensification of photocatalytic processes, Chem. Eng. Process, 46, 781-789.   DOI
21 Xia, J., Jiang, D., Chen, M., Li, D., Zhu, J., Lu, X., Yan, C., 2010, Preparation and characterization of monodisperse Ce-doped $TiO_2$ microspheres with visible light photocatalytic activity, Colloids Surf. A, 372, 107-114.   DOI
22 Zhao, J., Yang, X., 2003, Photocatalytic oxidation for indoor air purification: a literature review, Build. Environ, 38, 645-654.   DOI