• Title/Summary/Keyword: Xilinx Synthesis

Search Result 38, Processing Time 0.024 seconds

Comparative analysis of the digital circuit designing ability of ChatGPT (ChatGPT을 활용한 디지털회로 설계 능력에 대한 비교 분석)

  • Kihun Nam
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.967-971
    • /
    • 2023
  • Recently, a variety of AI-based platform services are available, and one of them is ChatGPT that processes a large quantity of data in the natural language and generates an answer after self-learning. ChatGPT can perform various tasks including software programming in the IT sector. Particularly, it may help generate a simple program and correct errors using C Language, which is a major programming language. Accordingly, it is expected that ChatGPT is capable of effectively using Verilog HDL, which is a hardware language created in C Language. Verilog HDL synthesis, however, is to generate imperative sentences in a logical circuit form and thus it needs to be verified whether the products are executed properly. In this paper, we aim to select small-scale logical circuits for ease of experimentation and to verify the results of circuits generated by ChatGPT and human-designed circuits. As to experimental environments, Xilinx ISE 14.7 was used for module modeling, and the xc3s1000 FPGA chip was used for module embodiment. Comparative analysis was performed on the use area and processing time of FPGA to compare the performance of ChatGPT products and Verilog HDL products.

A VLSI Efficient Design and Implementation of EBCOT for JPEG2000 (JPEG2000을 위한 효율적인 EBCOT의 VLSI 설계 및 구현)

  • Yang, Sang-Hoon;Yoo, Hyuck-Min;Park, Dong-Sun;Yoon, Sook
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.3
    • /
    • pp.37-43
    • /
    • 2009
  • The new still image compression standard JPEG2000 is consisted of DWT and EBCOT. In this paper, proposed and designed new algorithm in efficient EBCOT. BPC based on the contort. Proposed BPC Algorithm is forecasted coding pass using Sigstage, column, mpass value. BAC design apply 4-pipeline stage. EBCOT designed using Verilog HDL. Verification and Synthesis using Xillinx FPGA technology.

Evolutionary Design of Image Filter Using The Celoxica Rc1000 Board

  • Wang, Jin;Jung, Je-Kyo;Lee, Chong-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1355-1360
    • /
    • 2005
  • In this paper, we approach the problem of image filter design automation using a kind of intrinsic evolvable hardware architecture. For the purpose of implementing the intrinsic evolution process in a common FPGA chip and evolving a complicated digital circuit system-image filter, the design automation system employs the reconfigurable circuit architecture as the reconfigurable component of the EHW. The reconfigurable circuit architecture is inspired by the Cartesian Genetic Programming and the functional level evolution. To increase the speed of the hardware evolution, the whole evolvable hardware system which consists of evolution algorithm unit, fitness value calculation unit and reconfigurable unit are implemented by a commercial FPGA chip. The Celoxica RC1000 card which is fitted with a Xilinx Virtex xcv2000E FPGA chip is employed as the experiment platform. As the result, we conclude the terms of the synthesis report of the image filter design automation system and hardware evolution speed in the Celoxica RC1000 card. The evolved image filter is also compared with the conventional image filter form the point of filtered image quality.

  • PDF

Hardware Implementation of a Fast Inter Prediction Engine for MPEG-4 AVC (MPEG-4 AVC를 위한 고속 인터 예측기의 하드웨어 구현)

  • Lim Young hun;Lee Dae joon;Jeong Yong jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.3C
    • /
    • pp.102-111
    • /
    • 2005
  • In this paper, we propose an advanced hardware architecture for the fast inter prediction engine of the video coding standard MPEG-4 AVC. We describe the algorithm and derive the hardware architecture emphasizing and real time operation of the quarter_pel based motion estimation. The fast inter prediction engine is composed of block segmentation, motion estimation, motion compensation, and the fast quarter_pel calculator. The proposed architecture has been verified by ARM-interfaced emulation board using Excalibur & Virtex2 FPGA, and also by synthesis on Samsung 0.18 um CMOS technology. The synthesis result shows that the proposed hardware can operate at 62.5MHz. In this case, it can process about 88 QCIF video frames per second. The hardware is being used as a core module when implementing a complete MPEG-4 AVC video encoder chip for real-time multimedia application.

Smart grid and nuclear power plant security by integrating cryptographic hardware chip

  • Kumar, Niraj;Mishra, Vishnu Mohan;Kumar, Adesh
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3327-3334
    • /
    • 2021
  • Present electric grids are advanced to integrate smart grids, distributed resources, high-speed sensing and control, and other advanced metering technologies. Cybersecurity is one of the challenges of the smart grid and nuclear plant digital system. It affects the advanced metering infrastructure (AMI), for grid data communication and controls the information in real-time. The research article is emphasized solving the nuclear and smart grid hardware security issues with the integration of field programmable gate array (FPGA), and implementing the latest Time Authenticated Cryptographic Identity Transmission (TACIT) cryptographic algorithm in the chip. The cryptographic-based encryption and decryption approach can be used for a smart grid distribution system embedding with FPGA hardware. The chip design is carried in Xilinx ISE 14.7 and synthesized on Virtex-5 FPGA hardware. The state of the art of work is that the algorithm is implemented on FPGA hardware that provides the scalable design with different key sizes, and its integration enhances the grid hardware security and switching. It has been reported by similar state-of-the-art approaches, that the algorithm was limited in software, not implemented in a hardware chip. The main finding of the research work is that the design predicts the utilization of hardware parameters such as slices, LUTs, flip-flops, memory, input/output blocks, and timing information for Virtex-5 FPGA synthesis before the chip fabrication. The information is extracted for 8-bit to 128-bit key and grid data with initial parameters. TACIT security chip supports 400 MHz frequency for 128-bit key. The research work is an effort to provide the solution for the industries working towards embedded hardware security for the smart grid, power plants, and nuclear applications.

Multi-Port Register File Design and Implementation for the SIMD Programmable Shader (SIMD 프로그래머블 셰이더를 위한 멀티포트 레지스터 파일 설계 및 구현)

  • Yoon, Wan-Oh;Kim, Kyeong-Seob;Cheong, Jin-Ha;Choi, Sang-Bang
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.9
    • /
    • pp.85-95
    • /
    • 2008
  • Characteristically, 3D graphic algorithms have to perform complex calculations on massive amount of stream data. The vertex and pixel shaders have enabled efficient execution of graphic algorithms by hardware, and these graphic processors may seem to have achieved the aim of "hardwarization of software shaders." However, the hardware shaders have hitherto been evolving within the limits of Z-buffer based algorithms. We predict that the ultimate model for future graphic processors will be an algorithm-independent integrated shader which combines the functions of both vertex and pixel shaders. We design the register file model that supports 3-dimensional computer graphic on the programmable unified shader processor. we have verified the accurate calculated value using FPGA Virtex-4(xcvlx200) made by Xilinx for operating binary files made by the implementation progress based on synthesis results.

A Hardware Design of Feature Detector for Realtime Processing of SIFT(Scale Invariant Feature Transform) Algorithm in Embedded Systems (임베디드 환경에서 SIFT 알고리즘의 실시간 처리를 위한 특징점 검출기의 하드웨어 구현)

  • Park, Chan-Il;Lee, Su-Hyun;Jeong, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.3
    • /
    • pp.86-95
    • /
    • 2009
  • SIFT is an algorithm to extract vectors at pixels around keypoints, in which the pixel colors are very different from neighbors, such as vertices and edges of an object. The SIFT algorithm is being actively researched for various image processing applications including 3D image reconstructions and intelligent vision system for robots. In this paper, we implement a hardware to sift feature detection algorithm for real time processing in embedded systems. We estimate that the hardware implementation give a performance 25ms of $1,280{\times}960$ image and 5ms of $640{\times}480$ image at 100MHz. And the implemented hardware consumes 45,792 LUTs(85%) with Synplify 8.li synthesis tool.