• Title/Summary/Keyword: Xenotransplantation

Search Result 149, Processing Time 0.028 seconds

Current Status and Prospects of Somatic Cell Nuclear Transfer and Cloning

  • Cheong, H.T.
    • Korean Journal of Animal Reproduction
    • /
    • v.23 no.4
    • /
    • pp.393-398
    • /
    • 1999
  • Somatic cell nuclear transfer is an efficient technique for the multiplication of elite livestock, engineering of transgenic animals, cell therapy and xenotransplantation, and analyzing the interactions between nucleus and cytoplasm, for various agricultural, biomedical and research purposes. Since the first somatic cell clone lamb was born, tremendous progress has been made toward developing technology for animal cloning. Viable farm animals and mice have now been produced by nuclear transfer using various fetal and adult somatic cells as nuclei donors. Transgenic clones were also produced from nuclear transfer of transfected somatic cells. In the future, somatic cell nuclear transfer will provide more numerous opportunities, both in basic and appled research as well as immediate uses in the generations of superior clone and transgenic animals. However, further technology refinement and improved understanding of the process are essential for commercial and basic research applications.

  • PDF

Evaluation of the Potential Risk of Porcine Endogenous Retrovirus (PERV) Infection in Nude Mice

  • Bae, Eun-Hye;Jung, Yong-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.4
    • /
    • pp.387-390
    • /
    • 2011
  • Nude mice (BALB/c) were grafted with human 293 cells and PERV (porcine endogenous retrovirus)-IRES-EGFP (a packageable retroviral vector plasmid containing an internal ribosome entry site-enhanced green fluorescent protein)-producing pig PK15 cells in order to determine whether the pig cells could transmit PERV-IRES-EGFP to mice and human 293 cells in vivo. None of the transplanted human 293 cell lines were infected by PERV, but PCR analysis identified PERV-B provirus integration into both the heart and salivary gland of the inoculated nude mice. Our data indicate that hearts and salivary glands can be used to identify PERV-B receptors.

Xenotransplantation of Pig Spermatogonia into Mouse Testis

  • 이미숙;최윤정;권득남;김진회
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.82-82
    • /
    • 2003
  • The objective of the present study was to investigate the survival effect after transplantation of pig spermatogonia cells into mouse testis. Donor cells were collected from porcine testis and the isolated spermatogonial stem cells were labeled with a fluorescent marker before transplantation and transplanted into testes of busulfan-treated recipient mice. Testes were examined for the presence and localization of labeled donor cells immediately after transplantation or every week for 4 wk. Transplanted germ cells were present in the seminiferous epithelium at 4 weeks after the transplantation, but any differentiating porcine-derived cells were not detected in mouse testis. These results indicate that porcine-derived spermatogonial stem cells can be survived in the recipient, but suggest that porcine-derived male stem cells can not proceed to further differentiating step without helping of immunosuppressor agents.

  • PDF

Recent Advances in Cloning Technology in the Pig -Review-

  • Miyoshi, K.;Sato, E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.2
    • /
    • pp.258-264
    • /
    • 2000
  • Production systems for cloned pigs are very important not only for an increase in production of superior animals but also for the production of knockout animals with organs that do not contain antigens for xenotransplantation or to analyze functions of isolated human genes. At present, however, effective systems have not been developed. We have tried to produce cloned pigs by transfering cultured cells into enucleated oocytes and obtained some cloned embryos. To develop a production system for cloned pigs, the basic technologies needed to support such an effort must be improved.

Phenotype Manipulation by Gene Transfer in Animals - Review -

  • Fujiwara, Y.;Park, H.-M.;Muramatsu, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.2
    • /
    • pp.244-257
    • /
    • 2000
  • Recent progress in molecular biology has made it possible to transfer genes of interest into cells and target tissues of living animals. This enables one to manipulate phenotype of cells and whole animals in selected and intended ways. The consequence of such gene transfer attempts have been the production of various types of "transgenic" animals that cannot be classified by classical nomenclature of exclusively either "transgenic" or "nontransgenic". Emphasis was placed on characterizing two transgenic categories, i.e., "transfectgenic and somatotransgenic" and "genuine transgenic" animals basically from a view point of their use for therapeutic purposes. Current state of art and possible solutions for problems encountered at present are discussed.

Minipigs as Laboratory Animals: Facility Management and Husbandry

  • Koo, Ok-Jae;Jang, Goo;Lee, Byeong-Chun
    • Reproductive and Developmental Biology
    • /
    • v.36 no.1
    • /
    • pp.79-85
    • /
    • 2012
  • Minipigs are regarded as one of the most important laboratory animal in that anatomical and physiological properties are similar to human and their reproduction efficiency is relatively higher compared to other large animal species. Particularly, several diseases that cannot be mimicked in rodent models are successfully occurred or induced in pig models therefore it has been interested in a valuable model for human diseases. Pigs are also 'standard' species in xenotransplantation research. To maximize experimental outcome using minipigs, establishment and management of proper animal facility, right animal husbandry and control of pathogens are very important. In this review, we summarized several international guidelines related with minipigs published by several companies or governments and discuss optimal conditions for providing informative ideas to the researchers who want to use minipigs in their future studies.

Anticalcification Treatment of Glutaraldehyde-fixed Bovine Pericardium with Amino Acids (The Effect of Ethanol, Glutamic Acid and Homocysteic Acid Treatment) (글루타르알데하이드로 고정한 소 심낭의 아미노산을 이용한 항석회화 처리(에탄올, 글루타믹 산, 호모시스테익 산 처리의 효과))

  • Lee, Cheul;Kim, Yong-Jin;Lee, Chang-Ha;Kim, Soo-Hwan;Choi, Seung-Hwa
    • Journal of Chest Surgery
    • /
    • v.42 no.4
    • /
    • pp.409-417
    • /
    • 2009
  • Background: Glutaraldehyde-fixed heterografts are prone to calcification after long-term implantation in human, and this is one of the limiting factors for the longevity of the heterografts used in cardiovascular surgery. The aim of the study was to evaluate the anticalcification effect of an ethanol and amino acids treatment on glutaraldehyde-fixed bovine pericardium. Material and Method: Bovine pericardial tissues were divided into 5 groups. Group 1 consisted of tissues fixed with glutaraldehyde, group 2 consisted of commercially available bovine pericardial valve tissues (Carpentier-Edwards PERIMOUNT), group 3 consisted of glutaraldehyde-fixed tissues treated with ethanol, group 4 consisted of glutaraldehyde-fixed tissues treated with ethanol and L-glutamic acid, and group 5 consisted of glutaraldehyde-fixed tissues treated with ethanol and homocysteic acid. The tissue microstructure was examined by light and electron microscopy. Tissue samples of each group were implanted into rat subcutaneous tissue for 3 $\sim$ 4 months and the calcium contents were measured after harvest. Result: The collagen fibers appeared to be well preserved in all the groups. The calcium contents of groups 2, 3, 4 and 5 (13.46$\pm$11.74, 0.33$\pm$0.02, 0.39$\pm$0.08 and 0.42$\pm$0.06 $\mu$g/mg, respectively) were all significantly lower than that of group 1 (149.97$\pm$28.25 $\mu$g/mg) (p<0.05). The calcium contents of groups 3, 4 and 5 were all significantly lower than that of group 2 (p<0.05). Conclusion: Treatment with ethanol alone or in combination with amino acids (L-glutamic acid or homocysteic acid) strongly prevented the calcification of glutaraldehyde-fixed bovine pericardium.

Comparison of Different Methods of Aortic Valve Conduit Xenograft Preservation in an Animal Experiment Model; Fresh Cryopreservation versus Acellularized Cryopreservation (동물 실험 모델에서 적용한 이종대동맥판막도관의 조직보존방법 비교; 신선 냉동보존과 무세포화 냉동보존)

  • Kim, Chang Young;Kim, Kyung-Hwan;Moon, Kyung Chul;Kim, Woong-Han;Sung, Si-Chan;Kim, Yong-Jin
    • Journal of Chest Surgery
    • /
    • v.43 no.1
    • /
    • pp.11-19
    • /
    • 2010
  • Background: The commercially used vascular xenografts have some problems such as calcification, fibrosis and tissue degeneration that are associated with inflammatory and immunologic reactions. We compared two methods of xenograft preservation (fresh cryopreservation versus acellularized cryopreservation) of goat aorta. Material and Method: Aortic valved xenografts were harvested from adult pigs, and these were preserved using fresh cryopreservation (FC group, n=4) or acellularized crypreservation (AC group, n=4). These xenografts were implanted into adult goats. There were 2 short-term survivors (less than 100 days) and 2 long-term survivors in each group. These xenografts were explanted and they underwent microscopic examination. Result: The goats survived 31, 40, 107 and 411 days in the FC group and the other goats survived 5, 40, 363 and 636 days in the AC group. All the short-term survivors in each group expired because of rupture at the proximal anastomosis site. Marked neutrophil infiltration was observed in the FC group FC and lymphocytes were observed in the AC group. There were no differences in the occurrence of calcification, fibrosis and thrombosis among the groups. Conclusion: Some goats survived more than 100 days after the xenograft implantation irrespective of the methods of preservation. Because severe tissue degeneration developed in both groups, we think these methods are not appropriate for xenograft preservation of aorta. It was worth a preliminary trial for improving the preservation method or to modify the processing of xenografts.

Development of Porcine Pericardial Heterograft for Clinical Application (Tensile Strength-thickness) (돼지의 심낭을 이용한 이종이식 보철편의 개발 (장력-두께간의 구조적 특성))

  • Kim, Kwan-Chang;Lee, Cheul;Choi, Chang-Hue;Lee, Chang-Ha;Oh, Sam-Sae;Park, Seong-Sik;Kim, Kyung-Hwan;Kim, Woong-Han;Kim, Yong-Jin
    • Journal of Chest Surgery
    • /
    • v.41 no.2
    • /
    • pp.170-176
    • /
    • 2008
  • Background: Bioprosthetic devices for treating cardiovascular diseases and defects may provide alternatives to autologous and homograft tissue. We evaluated the mechanical and physical conditions of a porcine pericardial bioprosthesis treated with Glutaraldehyde (GA), Ethanol, or Sodium dodecylsulfate (SDS) before implantation. Material and Method: 1) Thirty square-shaped pieces of porcine pericardium were fixed in 0.625%, 1.5% or 3% GA solution. 2) The tensile strength and thickness of these and other bioprosthesis, including fresh porcine pericardium, fresh human pericardium, and commercially produced heterografts, were measured. 3) The tensile strength and thickness of the six treated groups (GA-Ethanol, Ethanol-GA, SDS only, SDS-GA, Ethanol-SDS-GA and SDS-Ethanol-GA) were measured. Result: 1) Porcine pericardium fixed in 0.625% GA the thinnest and had the lowest tensile strength, with thickness and tensile strength increasing with the concentration of GA solution. The relationship between tensile strength and thickness of porcine pericardium increased at thicknesses greater than 0.1mm (correlation-coefficient 0.514, 0<0.001). 2) There were no differences in tensile strength or thickness between commercially-produced heterografts. 3) Treatment of GA, ethanol, or SDS minimally influenced thickness and tensile strength of porcine pericardium, except for SDS alone. Conclusion: Porcine pericardial bioprosthesis greater than 0.1 mm thick provide better handling and advantageous tensile strength. GA fixation did not cause physical or mechanical damage during anticalcification or decellularization treatment, but combining SDS-ethanol pre-treatment and GA fixation provided the best tensile strength and thickness.