• Title/Summary/Keyword: Xanthomonas citri pv. glycines

Search Result 5, Processing Time 0.021 seconds

Microbiota Communities of Healthy and Bacterial Pustule Diseased Soybean

  • Kim, Da-Ran;Kim, Su-Hyeon;Lee, Su In;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • v.38 no.4
    • /
    • pp.372-382
    • /
    • 2022
  • Soybean is an important source of protein and for a wide range of agricultural, food, and industrial applications. Soybean is being affected by Xanthomonas citri pv. glycines, a causal pathogen of bacterial pustule disease, result in a reduction in yield and quality. Diverse microbial communities of plants are involved in various plant stresses is known. Therefore, we designed to investigate the microbial community differentiation depending on the infection of X. citri pv. glycines. The microbial community's abundance, diversity, and similarity showed a difference between infected and non-infected soybean. Microbiota community analysis, excluding X. citri pv. glycines, revealed that Pseudomonas spp. would increase the population of the infected soybean. Results of DESeq analyses suggested that energy metabolism, secondary metabolite, and TCA cycle metabolism were actively diverse in the non-infected soybeans. Additionally, Streptomyces bacillaris S8, an endophyte microbiota member, was nominated as a key microbe in the healthy soybeans. Genome analysis of S. bacillaris S8 presented that salinomycin may be the critical antibacterial metabolite. Our findings on the composition of soybean microbiota communities and the key strain information will contribute to developing biological control strategies against X. citri pv. glycines.

Characterization of Xanthomonas citri pv. glycines Population Genetics and Virulence in a National Survey of Bacterial Pustule Disease in Korea

  • Kang, In-Jeong;Kim, Kyung Seok;Beattie, Gwyn A.;Chung, Hyunjung;Heu, Sunggi;Hwang, Ingyu
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.652-661
    • /
    • 2021
  • Xanthomonas citri pv. glycines (Xcg) is a major pathogen of soybean (Glycine max) in South Korea, despite the availability of soybean varieties with some resistance. We conducted a nationwide survey of the incidence and severity of bacterial pustule caused by Xcg. The percentage of infected fields was 7% to 17% between 2015 and 2017. We characterized the diversity of a nationwide collection of 106 Xcg isolates based on avrBs3 banding patterns. The isolates fell into 11 groups, each represented by a type strain; only two of these were similar to isolates collected from 1999 to 2002. The diversity of Xcg strains increased and the dominant strains changed between 1999 and 2017, with three new type strains comprising 44% of the isolates examined in 2012 to 2017. Pathogenicity tests did not show evidence for a shift in the races or aggressiveness of Xcg strains. Korean soybean cultivars, including the widely-grown Daewon cultivar, were susceptible to the 11 new type strains. The cultivar CNS, which carries the rxp resistance gene, was susceptible to most type strains, including two representing 83% of the Korean Xcg strains. In contrast, Williams 82, which also carries rxp, showed resistance to at least five type strains. Collectively, these results suggest that Williams 82 has resistance loci in addition to rxp. The widespread distribution of Xcg, the high virulence of the current endemic strains, and the low resistance of most Korean soybean cultivars collectively favor widespread disease in Korea in years that are favorable to pustule development.

Isolation and characterization of native plasmids carrying avirulence genes in Xanthomonas spp.

  • Sunggi hen;Lee, Seungdon;Jaewoong Jee;Park, Minsun
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.71.1-71
    • /
    • 2003
  • Most major plant pathogenic bacteria in Korea belong to Xanthomonas spp.. Xanthomonas oryzae pv. oryzae is a major pathogen in rice, X. campestris pv. vesicatoria in pepper, X. axonopodis pv. giycines in soybean, X. campestris pv. campestris in cabbage, and X. axonoposid pv. citri in tangerin. Host specificity of the bacterial pathogen depends on the avirulence gene in the pathogen and the corresponding resistance gene in host plants. Many avirulence genes in bacteiral pathogen located on the native plasmids. However, the presence of the native plasmids in Xanthomonas spp. was not investigated well. In order to study the host specificity, we isolated native plasmids from Xanthomonas spp. and compared those plasmids each other, The presence of the native plasmids and the characteristics of the plasmids depended on the bacterial strains. In the X. axonopodis pv. glycines, most strains carried native plasmids but some strains did not. Some strains carry about 60 kb native plasmids including 3 different aviurlence genes. We will discuss the characteristics of the native plasmids isolated from the Xanthomonas spp.

  • PDF

Direct PCR Detection of the Causal Agents, Soybean Bacterial Pustule, Xanthomonas axonopodis pv. glycines in Soybean Seeds (콩 종자에서 Xanthomonas axonopodis pv. glycines의 검출을 위한 Direct PCR 방법 개발)

  • Lee, Yong-Ju;Kang, Mi-Hyung;Noh, Tae-Hwan;Lee, Du-Ku;Lee, Geon-Hwi;Kim, Si-Ju
    • Research in Plant Disease
    • /
    • v.15 no.2
    • /
    • pp.83-87
    • /
    • 2009
  • Direct Polymerase Chain Reaction (PCR) method that combines biological and enzymatic amplification of PCR targets was developed for the detection of Xanthomonas axonopodis pv. glycines on soybeen seeds without DNA isolation. Primers Xag F1 and Xag R1 were designed to specifically amplify a 401 bp fragment of the glycinecin A gene of X axonopodis pv. glycines. Xag F1 and Xag R1 were used to carry out the PCR analysis with genomic DNA from 45 different bacterial strains including phylogenetically related bacteria with X axonopodis pv. glycines, and other bacterial strains of different genus and species. The PCR assay using this set of primers were able to detect X axonopodis pv. glycines with DNA concentration as low as 200 fg and $1.8{\times}10^3$ cfu/ml. The Xag was detected from the seed samples incubated for 2 hrs with shaking and the intensity of the band was increase with the incubation time of seeds. The Direct PCR assay method without DNA isolation makes detection of X. axonopodis pv. glycines on soybean seeds easier and more sensitive than other conventional methods. The developed seed assay using direct PCR method will be useful for the specific detection of X. axonopodis pv. glycines in soybean seed samples.

PCR-Based Sensitive Detection and Identification of Xanthomonas oryzae pv. oryzae (중합효소연쇄 반응에 의한 벼 흰잎마름병균의 특이적 검출)

  • Lee, Byoung-Moo;Park, Young-Jin;Park, Dong-Suk;Kim, Jeong-Gu;Kang, Hee-Wan;Noh, Tae-Hwan;Lee, Gil-Bok;Ahn, Joung-Kuk
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.3
    • /
    • pp.256-264
    • /
    • 2004
  • A new primer set was developed for the detection and identification of Xanthomonas oryzae pv. oryzae, the bacterial leaf blight (BLB) pathogen in rice plant. The nucleotide sequence of hpaA gene was determined from X. o. pv. oryzae str. KACC10331, and the sequence information was used to design primers for the application of the polymerase chain reaction (PCR). The nucleotide sequence of hpaA from X. o. pv. oryzae str. KACC 10331 was aligned with those of X. campestris pv. vesicatoria, X. campestris pv. campestris, X. axonopodis pv. citri, and X. axonopodis pv. glycines. Based on these results, a primer set(XOF and XOR) was designed for the specific detection of hpaA in X. o. pv. oryzae. The length of PCR products amplified using the primer set was 534-bp. The PCR product was detected from only X. o. pv. oryzae among other Xanthomonas strains and reference bacteria. This product was used to confirm the conservation of hpaA among Xanthomonas strains by Southern-blotting. Furthermore, PCR amplification with XOF and XOR was used to detect the pathogen in an artificially infected leaf. The sensitivity of PCR detection in the pure culture suspension was also determined. This PCR-based detection methods will be a useful method for the detection and identification of X. o. pv. oryzae as well as disease forecasting.