• Title/Summary/Keyword: Xanthomonas campestris pathovar

Search Result 3, Processing Time 0.021 seconds

Screening the Antibacterial Activities of Streptomyces Extracts against Phytopathogens Xanthomonas oryzae pathovar oryzae, Xanthomonas campestris pathovar vesicatoria, and Pectobacterium carotovorum pathovar carotovorum

  • Kim, Seung-Hwan;Cheng, Jinhua;Yang, Seung Hwan;Suh, Joo-Won;Song, Eun-Sung;Kang, Lin-Woo;Kim, Jeong-Gu
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.3
    • /
    • pp.253-258
    • /
    • 2015
  • Xanthomonas oryzae pv. oryzae (Xoo), X. campestris pv. vesicatoria (Xcv), and Pectobacterium carotovorum pv. carotovorum (Pcc) are the causative agents of bacterial blight in rice, bacterial spot in pepper, and bacterial soft rot in carrot and cabbage, respectively. To isolate novel microbial extracts with antimicrobial activities against these bacteria, approximately 5,300 different Streptomyces extracts were prepared and tested. Microbial cultures from various Streptomyces strains isolated from the Jeju Island, Baekam, Mankyoung river, Jiri mountain etc. in Korea were extracted into three different factions -secreted hydrophobic, secreted hydrophilic, and mycelia- using ethyl acetate, water, and methanol. Initially, 34, 29, and 10 extracts were selected as having antibacterial activities against Xoo, Xcv, and Pcc, respectively. Extracts 1169G4, 1172E9, and 1172E10 had the highest growth inhibition activities against both Xoo and Xcv, and extracts 1151H7 and 1152H7 showed the highest growth inhibition activities against Pcc.

Sensitive and Pathovar-Specific Detection of Xanthormonas campestris pv. glycines by DNA Hybridization and Polymerase Chain Reaction Analysis

  • Changsik Oh;Sunggi Heu;Park, Yong-Chul
    • The Plant Pathology Journal
    • /
    • v.15 no.1
    • /
    • pp.57-61
    • /
    • 1999
  • Xanthomonas campestris pv. glycines causes bacterial pustule disease on susceptible soybean leaves and produces a bacteriocin, named glycinecinA, against most xanthomonads including Xanthomonas campestris pv. vesicatoria. One of the 5 isolated DNA regions responsible for bacteriocin production, a 1.7 kb DNA region for the glycinecinA gene, was used as a probe to detect the presence of the homolog DNA in other bacterial strains. Among 55 bacterial strains tested, only X. campestris pv. glycines showed the positive signal with glycinecinA DNA. Two oligomers, heu2 and heu4, derived from a glycinecinA DNA were used to carry out the polymerase chain reaction (PCR) analysis with chromosomal DNA from 55 different bacterial strains including 24 different strains of X. campestris pv. glycines, 9 different pathovars of xanthomonads, and other 22 bacterial strains of different genus and species. By separation of the PCR products on agarose gel, a 0.86 kb DNA fragment was specifically detected when X. campestris pv. glycines was present in the amplification assay. The 0.86 kb fragment was not amplified when DNA from other bacteria was used for the assay. Southern analysis with glycinecinA DNA showed that the PCR signal was obtained with X. campestris pv. glycines isolates from various geographic regions and soybean cultivars. Therefore, the 1.7 kb DNA region for the glycinecinA gene can be used for the pathovar-specific probe for the DNA hybridization and the primers heu2 and heu4 can be used for the pathovar-specific primers for the PCR analysis to detect X. campestris pv. glycines.

  • PDF

Light- and Relative Humidity-Regulated Hypersensitive Cell Death and Plant Immunity in Chinese Cabbage Leaves by a Non-adapted Bacteria Xanthomonas campestris pv. vesicatoria

  • Young Hee Lee;Yun-Hee Kim;Jeum Kyu Hong
    • The Plant Pathology Journal
    • /
    • v.40 no.4
    • /
    • pp.358-376
    • /
    • 2024
  • Inoculation of Chinese cabbage leaves with high titer (107 cfu/ml) of the non-adapted bacteria Xanthomonas campestris pv. vesicatoria (Xcv) strain Bv5-4a.1 triggered rapid leaf tissue collapses and hypersensitive cell death (HCD) at 24 h. Electrolyte leakage and lipid peroxidation markedly increased in the Xcv-inoculated leaves. Defence-related gene expressions (BrPR1, BrPR4, BrChi1, BrGST1 and BrAPX1) were preferentially activated in the Xcv-inoculated leaves. The Xcv-triggered HCD was attenuated by continuous light but accelerated by a dark environment, and the prolonged high relative humidity also alleviated the HCD. Constant dark and increased relative humidity provided favorable conditions for the Xcv bacterial growth in the leaves. Pretreated fluridone (biosynthetic inhibitor of endogenous abscisic acid [ABA]) increased the HCD in the Xcv-inoculated leaves, but exogenous ABA attenuated the HCD. The pretreated ABA also reduced the Xcv bacterial growth in the leaves. These results highlight that the onset of HCD in Chinese cabbage leaves initiated by non-adapted pathogen Xcv Bv5-4a.1 and in planta bacterial growth was differently modulated by internal and external conditional changes.