• Title/Summary/Keyword: XRD and FT-IR

Search Result 582, Processing Time 0.021 seconds

Optimization of sintering process of the far-infrared radiation ceramic (원적외선 방사 세라믹의 소결공정 최적화)

  • Park, Jae Hwa;Kim, Hyun Mi;Kang, Hyo Sang;Choi, Jae Sang;Choi, Bong Geun;Nam, Ki Woong;Nam, Han Woo;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.1
    • /
    • pp.28-34
    • /
    • 2016
  • Far-infrared radiation ceramic is an attractive material that provides thermal therapy by permeating the infrared rays into the deep inside of the human skin. Therefore, it is currently used for thermal therapy devices, thermal mat, heating equipment and so on. This work aims to optimize the sintering process of the far-infrared radiation ceramic with the process parameters of temperature and time. A variety of characterization tools have been used to investigate the optimal sintering condition of far-infrared radiation. The phase of far-infrared radiation ceramic was characterized by using X-ray diffraction (XRD) and microstructure of fracture surface was studied by scanning electron microscopy (SEM). The FT-IR was also performed to measure the far-infrared emissivity.

A Study of Upgrading Real Biogas via CO2 Precipitation Route Under Indian Scenario

  • Gehlaut, Avneesh Kumar;Gaur, Ankur;Hasan, Shabih Ul;Park, Jin-Won
    • Korean Chemical Engineering Research
    • /
    • v.56 no.3
    • /
    • pp.381-387
    • /
    • 2018
  • Our study focuses on upgrading real biogas obtained under Indian scenario using carbon capture and utilization (CCU) technology to remove carbon dioxide ($CO_2$) and utilize it by forming metal carbonate. Amines such as monoethanolamine (MEA), diethanolamine (DEA), and sodium hydroxide (NaOH) were used to rapidly convert gaseous $CO_2$ to aqueous $CO_2$, and $BaCl_2$ was used as an additive to react with the aqueous $CO_2$ and rapidly precipitating the aqueous $CO_2$. All experiments were conducted at $25^{\circ}C$ and 1 atm. We analyzed the characteristics of the $BaCO_3$ precipitates using X-ray diffractometry (XRD), scanning electron microscopy - Energy dispersive spectroscopy (SEM-EDS) and Fourier-transform infrared spectroscopy (FT-IR) analyses. The precipitates exhibited witherite morphology confirmed by the XRD results, and FT-IR confirmed that the metal salt formed was $BaCO_3$, and EDS showed that there were no traces of impurities present in it. The quantity of the $BaCO_3$ was larger when formed with DEA. Also, a comparison was done with a previous study of ours conducted in Korean conditions. Finally, we observed that the carbonate obtained using real biogas showed similar properties to carbonates available in the market. An economic analysis was done to show the cost effectiveness of the method employed by us.

Analysis of rutile single crystals grown by skull melting method (Skull melting법에 의해 성장된 rutile 단결정 분석)

  • Seok, Jeong-Won;Choi, Jong-Koen
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.5
    • /
    • pp.181-188
    • /
    • 2006
  • Rutile single crystals grown by skull melting method were cut parallel and perpendicular to growth axis, and both sides of the cut wafers (${\phi}5.5mmx1.0mm$) were then polished to be mirror surfaces. The black wafers were changed into pale yellow color by annealing in air at 1200 and $1300^{\circ}C$ for $3{\sim}15\;and\;10{\sim}50$ hours, respectively. After annealing, structural and optical properties were examined by specific gravity (S.G), SEM-electron backscattered pattern (SEM-EBSP), X-ray diffraction (XRD), FT-IR transmittance spectra, laser Raman spectroscopy (LRS), photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS). These results are analyzed increase of weight in air, decrease of weight in water and specific gravity, shown secondary phase of needle shape, diffusion of oxygen ion and increase of $Ti^{3+}$. From the above results, we suggest that the skull melting method grown rutile single crystals contain defect centers such as $O_v,\;Ti^{3+},\;O_v-Ti^{3+}$ interstitials and $F^+-H^+$.

P(VDF-HPF)-Based Polymer Electrolyte Filled with Mesoporous ZnS (메조포러스 ZnS가 충전된 P(VDF-HPF) 고분자 전해질)

  • Seo, Young-ju;Cha, Jong-Ho;Lee, Huen;Ha, Yong-Joon;Koh, Jeong Hwan;Lee, Chulhaeng
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.170-174
    • /
    • 2008
  • ZnS-polymer gel films were prepared with incorporating mesoporous ZnS synthesized by surfactant-assisted templating process and poly (vinylidene fluoride)-hexafluoropropylene copolymer (P(VDF-HFP)) in order to observe the variation of ionic conductivities according to the various weight ratios between ZnS and P(VDF-HFP). Ionic conductivities for each gel electrolyte were measured with increasing temperature. As a result, ionic conductivities increased with increasing the amount of ZnS and temperature. In particular, the films with 20 and 25 wt% ZnS were found that they possessed the high ionic conductivity of approximately $10^{-4}Scm^{-1}$ at room temperature. However, above 20 wt% of ZnS, the enhancement of ionic conductivity was not observed. For the characterization of ZnS and the gel electrolyte, XRD (x-ray diffractometer), DSC (differential scanning calorimetry), TGA (thermogravimetric analysis), FT-IR (fourier transform-infrared spectrometer), SEM (scanning electron microscopy) and TEM (transmission electron microscopy) were employed. Ionic conductivities were measured by a.c. impedance method.

6H - SiC single crystal growth by sublimation process (승화법에 의한 SiC 단결정 육성)

  • 강승민;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.1
    • /
    • pp.50-59
    • /
    • 1995
  • Abstract 6 H - SiC single crystal was grown by sublimation growth system which was self - designed and manufactured. In order that the SiC source might be decomposited and sublimed and deposited on the 6H - seed substrate grown by Acheson method, the temperature gradient, the growth parameters of growth temperature and pressure were operately adjusted. So we could get the optimum temperature gradient inside of the crucible. The graphite crucible with SiC powder and thermal shield componants were purified at the elevated temperature by means of Ar purging process and the source baking, then it distributed to reduce the amount of the impurities come from those parts. It was recognized that the optimum growth temperature of the crucible was$2300~2400^{\circ}C$ at the Ar atmospheric pressure of 200~400 torr, and at that moment the growth rate was 500~1000 $\mu\textrm{m}$. And then, the as- grown crystal was cut with the wafer form, the evaluation about the crystal was carried out by XRD, the optical microscopic observation and FT IR spectrum measurement.

  • PDF

Preparation of Fabric Softener Product by using Amine-functionalized Magnesium-phyllosilicates (아민기로 관능화된 마그네슘-층상규산염을 이용한 섬유유연제 제조)

  • Kim, Seong Yeol;Choi, Yoo-Sung
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.580-585
    • /
    • 2019
  • In this study, we synthesized amine-functionalized magnesium-phyllosilicates (AF-MgP) with an octahedral and tetrahedral structure using (3-aminopropyl)triethoxysilane. The synthesis of AF-MgP, surface functionalization of amine and 1 : 2 ratio of the octahedral and tetrahedral structure were confirmed by FT-IR and XRD analysis. In addition, it was confirmed that AF-MgP was absorbed evenly on the surface of cotton fibers and coated on the cotton fibers from HR-SEM and EDX analysis. The antimicrobial activity test of cotton fibers according to KS confirmed that cotton fibers coated with AF-MgP particles show an enhanced antimicrobial activity against cutaneous microorganisms. Our results suggest that AF-MgP is not only applied as a functional nanomaterial that gives the cotton fiber antimicrobiality, but also can be used in the field of cosmetic and biomedical materials.

Vanadium Oxide Nanomaterials Prepared Using Urea and Formic Acid as Cathodes for Lithium Batteries (우레아 및 포름산을 이용한 바나듐 산화물 나노소재의 합성 및 전기화학적 특성)

  • Park, Su-Jin;Lee, Man-Ho;Park, Heai-Ku
    • Applied Chemistry for Engineering
    • /
    • v.21 no.2
    • /
    • pp.211-216
    • /
    • 2010
  • $(NH_4)_{0.3}V_2O_5$ nanorods and $V_2O_5$ nanosheets have been synthesized by the reaction of $V_2O_5$ gel via homogeneous precipitation process employing urea and formic acid. The electrochemical and chemical characteristics of these nanomaterials have been investigated using TGA, SEM, FT-IR, XRD, and LSV. The interlayer distance of $(NH_4)_{0.3}V_2O_5$ was about $10.7{\AA}$, and that of $V_2O_5$ synthesized by using formic acid was $14.2{\AA}$. The surface morphology of $(NH_4)_{0.3}V_2O_5$ and $V_2O_5$ showed features that looked like nanorods and nanosheets, respectively. Specific capacity of $(NH_4)_{0.3}V_2O_5$ nanorods prepared at $95^{\circ}C$ was at least 280 mAh/g at 10 mA/g discharge rate.

Effect of Linkage Groups on the Properties of Semi-flexible Liquid Crystalline Polymers (연결기가 반 유연성 액정중합체의 물성에 미치는 영향)

  • Park, Jong-Ryul;Yoon, Doo-Soo;Bang, Moon-Soo
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.445-451
    • /
    • 2015
  • Semi-flexible liquid crystalline polymers containing a mesogenic group and an octamethylene flexible spacer in the main chain were synthesized by solution polycondensation. The mesogenic group in the polymer consists of four aromatic rings connected by ester and ketone, ether, sulfide, methylene, sulfone, or isopropylidene linkage groups. This paper discusses effects of the central linker of the mesogenic group on polymer properties. The structures and properties of synthesized polymers were investigated by $^1H$-NMR, FT-IR, differential scanning calorimeter (DSC), thermogravimetric analyzer (TGA), X-ray diffractometer (XRD), and polarizing optical microscope (POM). Polymers having bent linkage groups exhibited low thermal transition temperatures, narrow mesophase temperature ranges, low liquid crystallinity, and good solubilities in organic solvents, while those having bulky linkage groups were amorphous and exhibited high glass transition temperatures.

Effects of Drying Agents on the Drying and Calcination in Synthesis of Mullite by Sol-Gel Process (졸-겔법에 의한 mullite합성시 건조 첨가제가 건조 및 소성에 미치는 영향)

  • Hahm, Yeong-Min;Hong, Young-Ho;Choi, Seung-Il
    • Applied Chemistry for Engineering
    • /
    • v.4 no.3
    • /
    • pp.497-504
    • /
    • 1993
  • The effect of DCCA (Drying Control Chemical Additives) on the drying of gel was investigated in order to determine an optimum drying condition of mullite precursor through sol-gel process. Aluminium sec-butoxide was synthesized from aluminium foil and then mullite powders were synthesized from Tetra-ethyl-ortho-silicate (TEOS) and the aluminium sec-butoxide. N, N-dimethyl formamide (DMF), Glycerol, 1, 4-Dioxane, and Oxalic acid were used as DCCA. Mullite powders that were calcined at 200, 900, 1100, and $1250^{\circ}C$ for 2hr were analysed by XRD, TG-DTA, FT-IR, and SEM in order to investigate structural change and characteristics of calcined powders. The results of this work showed that the drying time of gel was reduced to about half in the presence of 0.1mol DMF compared with the absence of DCCA and also calcined powders were obtained without remarkable structural change despite of the addition of DCCA.

  • PDF

Study on the Synthesis of Polycarbosilane as a SiC Precursor and its Comparative Property (탄화규소의 전구체로서 Polycarbosilane의 합성 및 물성 비교 연구)

  • Moon, Kyo-Tae;Min, Dong-Soo;Lim, Heun-Soung;Kim, Dong-Pyo
    • Applied Chemistry for Engineering
    • /
    • v.9 no.2
    • /
    • pp.159-164
    • /
    • 1998
  • Polycarbosilane(PCS) as a SiC precursor was synthesized from the rearrangement reaction of polydimethysilane(PDMS) in an autoclave, which prepared by dehalocoupling reaction of dichlorodimethylsilane. After fractional precipitation into three fractions in n-hexane-methanol mixture, they were characterized by FT-IR, NMR, GPC, TGA/DSC and XRD, and compared with the commercial product. We found that the molecular weight distributions of the PCS depended on the reaction pressures, temperatures and the reaction times, and affected thermal property and ceramic yield of the polymer. The monodispersed PCS containing less amount of oligomers and nonsoluble products was prepared by reaction of PDMS at $420^{\circ}C$ for 10 hrs, and it also gave the greatest amount of medium molecular weight($M_n=4,000$) fraction.

  • PDF