• Title/Summary/Keyword: XRD분석

Search Result 2,851, Processing Time 0.025 seconds

Electromagetic Wave Absorbing Properties of $Ni_{0.5}-Zn_{0.4}-X_{0.1}{\cdot}Fe_2O_4$(X=Cu, Mg, Mn)-Rubber Composite ($Ni_{0.5}-Zn_{0.4}-X_{0.1}{\cdot}Fe_2O_4$(X=Cu, Mg, Mn)-Rubber Composite의 전파흡수특성에 관한 연구)

  • Im, Hui-Dae;Yun, Guk-Tae;Lee, Chan-Gyu
    • Korean Journal of Materials Research
    • /
    • v.9 no.12
    • /
    • pp.1234-1239
    • /
    • 1999
  • Electromagnetic wave asorbing properties of the $Ni_{0.5}-Zn_{0.4}-X_{0.1}{\cdot}Fe_2O_4$, where X was replaced by substitution elements Cu, Mg, Mn, have been studied. The structure, shape, size and magnetic properties of the $Ni_{0.5}-Zn_{0.4}-X_{0.1}{\cdot}Fe_2O_4$ were analyzed by XRD, SEM, VSM. The relative complex permittivity, permeability, and electromagnetic wave absorbing properties were measured by Network Analyzer. The structure, shape, size and magnetization value of the $Ni_{0.5}-Zn_{0.4}-X_{0.1}{\cdot}Fe_2O_4$ were found to be similar in spite of substitution elements. The coercive force and hysteresis-loss showed maximum value when Mg was substituted for X. The dielectric loss(${\varepsilon}_r"/{\varepsilon}_r'$) was found to be maximum value when Mn was substituted for X. Also the magnetic loss(${\mu}_r"/{\mu}_r'$} was found to be maximum with Cu substitution. The electromagnetica wave absorbing property of the $Ni_{0.5}-Zn_{0.4}-X_{0.1}{\cdot}Fe_2O_4$-Rubber composite with 4mm thickness was excellent as over - 40dB at 9GHz, and the $Ni_{0.5}-Zn_{0.4}-X_{0.1}{\cdot}Fe_2O_4$-Rubber composite with 8mm thickness was over-40dB at 2GHz. Those composites also showed superior microwave absorbing properties.

  • PDF

Synthesis and Characterization of Al-containing Titanium Silicalite-1 Catalysts (알루미늄 함유 티타늄 실리카라이트-1 촉매의 합성 및 특성 연구)

  • Ko, Yong Sig;Hong, Suk Bong;Kim, Geon Joong;Ahn, Wha Seung
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.639-647
    • /
    • 1998
  • Al-containing titanium silicalite-1 ([Al]-TS-1) catalyst was prepared hydrothermally, and the effects of synthesis parameters such as silica/alumina sources, $SiO_2/TiO_2$ ratio, and aging treatment were investigated. The structure, crystal size, and shape were examined by XRD and SEM, and the extent of titanium incorporation into the zeolite framework was examined using UV-vis DRS spectroscopy. For [Al]-TS-1 catalyst preparation, aging of ca. 24h was essential, and the faster crystallization rates were achieved with Cab-O-Sil than with Ludox or TEOS as a silica source. In addition, the higher crystallinity and faster crystallization rate were obtained using sodium aluminate as an aluminum source. 2-butanol oxidation using $H_2O_2$ as an oxidant was carried out to confirm the redox property of the [Al]-TS-1. Acid sites catalyzed toluene alkylation study indicated that lattice titanium species in [Al]-TS-1 weakened the acid strength, and the para-ethyltoluene selectivity was enhanced as a results.

  • PDF

Strategy to Recover Rare Earth Elements from a Low Grade Resource via a Chemical Decomposition Method (화학적 분해법을 이용한 난용성 자원으로부터 희토류 회수 특성 연구)

  • Kim, Rina;Cho, Heechan;Jeong, Jinan;Kim, Jihye;Lee, Sugyeong
    • Resources Recycling
    • /
    • v.29 no.1
    • /
    • pp.17-24
    • /
    • 2020
  • In this study, rare earth elements (REE) leaching from a refractory REE ore containing goethite as a major gangue mineral was conducted, introducing a two-stage method of chemical decomposition-acid leaching. At the chemical decomposition step, using one of alkaline agent, NaOH, the ore was decomposed, changing NaOH concentration from 20 to 50 wt% at 10% (w/w) of pulp density and the maximum temperature achieved without boiling at each NaOH concentration. With increasing NaOH concentration, light REE (Ce, La and Nd) and iron were concentrated in the solid phase which is the decomposed product, while aluminum (Al) and phosphorus (P) were removed to the liquid phase, and their concentrations in the solid phase were down to 0.96 and 0.17%, respectively. In addition, through XRD analysis, it was found that the crystallinity of goethite was considerably decreased. At the acid leaching step, the product decomposed by 50 wt% NaOH was leached at 3.0 M HCl and 80 ℃ for 3 hr, then the REE leaching efficiency was above 94% (Ce 80%), and the leaching efficiencies of Al and P were decreased to 12 and 0%, respectively. Therefore, in terms of both REE leaching efficiency and impurity removal, those decomposition and leaching conditions were chosen as optimum processing methods of the investigated material. In terms of REE leaching mechanism, because REE and iron leaching efficiencies showed the positive correlation each other, so it can be concluded that decreasing crystallinity of goethite affect the improvement of REE leaching.

Evaluation of Fracture Toughness in Steel Weldment for Inner Wall of LNG Storage Tank (LNG 저장탱크 내조용 강 용접부의 파괴인성 평가)

  • Jang J.-i.;Ju J.-B.;Yang Y.-c.;Kim W.-s.;Hong S. H.;Kwon D.
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.7-13
    • /
    • 1998
  • In this study, for the safety performance of LNG storage tank, the fracture toughness in X-grooved weld HAZ(heat-affected zone) of $9\%$ Ni steel was evaluated qualitatively and quantitatively, and the relation with the change in microstructure was analyzed. The toughness assessment was peformed through the modified CTOD test proposed for thick weldment with X-groove. Additionally, microstructures of HAZ were evaluated by OM, SEM and XRD. From the results, HAZ toughness of SMA(shielded metal arc)-welded $9\%$ Ni steel decreased as the evaluated region approached the fusion line. The decrease in toughness was apparently caused by the increase in the fraction of coarse-grained zone within HAZ. On the other hand, toughness drop with decreasing test temperature in F.L.(fusion line) ${\~}$F.L.+3mm was larger than that in F.L.+5mm${\~}$F.L.+7mm region due to the fact that in the former regions, retained austenite had poor stability.

  • PDF

Removal of As(III) and Phenol by Multi-functional Property of Activated Carbon Impregnated With Manganese (망간첨착 활성탄의 다기능성을 이용한 3가 비소 및 페놀 제거)

  • Yu, Mok-Ryun;Hong, Soon-Chul;Yang, Jae-Kyu;Chang, Yoon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.3
    • /
    • pp.52-58
    • /
    • 2008
  • Mn-impregnated activated carbon (Mn-AC) prepared at different conditions was applied in the treatment of synthetic wastewater containing both organic and inorganic contaminants. Phenol and As(III) was used as the representative organic and inorganic contaminants, respectively. After evaluation of the physicochemical characteristic and stability of Mn-AC, oxidation of As(III) as well as adsorption of phenol by activated carbon(AC) and Mn-AC were investigated in a batch reactor. To investigate the stability of Mn-AC, dissolution of Mn from each Mn-AC was measured pH ranging from 2 to 4. Although Mn-AC was unstable at a strong acidic condition, the dissoluted Mn was below 3 ppm at pH 4. XRD analysis of Mn-AC indicated that the mineral type of the impregnated manganese was $Mn_2O_3$. From the simultaneous treatment of As(III) and phenol by AC and Mn-AC, As(III) oxidation by Mn-AC was greater than that by AC at lower pH, while the reverse order was observed at higher pH. After impregnation of Mn onto AC, 13% decrease of the surface area was observed, causing 8% reduction of phenol removal. Considering removal properties of As(III) and phenol, Mn-AC could be applied in the simultaneous treatment of wastewater contaminated with multi-contaminants.

Determining Kinetic Parameters and Stabilization Efficiency of Heavy Metals with Various Chemical Amendment (중금속 안정화제의 반응 매개변수 결정 및 중금속 안정화 효율성 평가)

  • Oh, Se-Jin;Kim, Sung-Chul;Kim, Tae-Hee;Yeon, Kyu-Hun;Lee, Jin-Soo;Yang, Jae-E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1063-1070
    • /
    • 2011
  • In this study, total of 5 different chemical amendments were evaluated for determining kinetic parameters and stabilization efficiency of heavy metals in aqueous phase. Standard solution of Cd and Pb ($100mg\;L^{-1}$) was mixed with various ratio of amendments (1, 3, 5, 10%) and heavy metal stabilization efficiency was monitored for 24hrs. All examined amendments showed over 90% of removal efficiency for both Cd and Pb except zerovalent iron (ZVI) for Cd (43-63%). Based on result of heavy metal stabilization efficiency, it was ordered as $CaCO_3$ > Dolomite > Zeolite > Steel slag > ZVI for both Cd and Pb in aqueous phase. For kinetic study, first order kinetic model was adapted to calculate kinetic parameters. In terms of reaction rate constants (k), zeolite showed the fastest reaction rate (k value from 0.4882 for 1% to 2.0105 for 10%) for Cd and ZVI (k value from 0.2304 for 1% to 0.5575 for 10%) for Pb. Considering reaction rate constant and half life for heavy metal stabilization, it was ordered as Zeolite > $CaCO_3$ > Dolomite > Steel slag > ZVI for Cd and $CaCO_3$ > Dolomite > Steel slag > Zeolite > ZVI for Pb. Overall result in this study can be interpreted that lime containing materials are more beneficial to remove heavy metals with high efficiency and less time consuming than absorbent materials.

Microfluidic Assisted Synthesis of Ag-ZnO Nanocomposites for Enhanced Photocatalytic Activity (광촉매 성능 강화를 위한 미세유체공정 기반 Ag-ZnO 나노복합체 합성)

  • Ko, Jae-Rak;Jun, Ho Young;Choi, Chang-Ho
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.291-296
    • /
    • 2021
  • Recently, there has been increasing demand for advancing photocatalytic techniques that are capable of the efficient removal of organic pollutants in water. TiO2, a representative photocatalytic material, has been commonly used as an effective photocatalyst, but it is rather expensive and an alternative is required that will fulfill the requirements of both high performing photocatalytic activities and cost-effectiveness. In this work, ZnO, which is more cost effective than TiO2, was synthesized by using a microreactor-assisted nanomaterials (MAN) process. The process enabled a continuous production of ZnO nanoparticles (NPs) with a flower-like structure with high uniformity. In order to resolve the limited light absorption of ZnO arising from its large band gap, Ag NPs were uniformly decorated on the flower-like ZnO surface by using the MAN process. The plasmonic effect of Ag NPs led to a broadening of the absorption range toward visible wavelengths. Ag NPs also helped inhibit the electron-hole recombination by drawing electrons generated from the light absorption of the flower-like ZnO NPs. As a result, the Ag-ZnO nanocomposites showed improved photocatalytic activities compared with the flower-like ZnO NPs. The photocatalytic activities were evaluated through the degradation of methylene blue (MB) solution. Scanning electron microscopy (SEM), x-ray diffraction (XRD), and energy-dispersive x-ray spectroscopy (EDS) confirmed the successful synthesis of Ag-ZnO nanocomposites with high uniformity. Ag-ZnO nanocomposites synthesized via the MAN process offer the potential for cost-effective and scalable production of next-generation photocatalytic materials.

Effect of Hollow Sphere Size on Heat Shield Properties of hollow TiO2/polyacrylate Composites (중공구의 크기에 의한 hollow TiO2/polyacrylate 복합체의 열차단 특성)

  • Kim, Jong Seok
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.690-694
    • /
    • 2021
  • Carbon spheres (CS) were fabricated using glucose as a precursor in the hydrothermal method. Hollow TiO2 (H-TiO2) spheres with 200 nm, 500 nm, and 1,200 nm were synthesized by CS/TiO2 core-shell particles via a sol-gel and calcination method. H-TiO2 spheres with nano and micron sizes were characterized using FE-SEM, HR-TEM, and X-ray diffraction. The CIE color coordinate, solar reflectance, and heat shield temperatures of H-TiO2/polyacrylate (PA) composite film were investigated using a UV-Vis-NIR spectrometer and homemade heat insulation temperature measuring device. H-TiO2/PA composites exhibit excellent thermal insulation since the hollow structure filled with dry air has low thermal conductivity and near infrared light reflecting performance. The thermal insulation increased with increasing the hollow sphere (HS) size on H-TiO2/PA composites. The PA composite film mixed with H-TiO2 filled with 1200 nm HS reduced the heat shield temperature by 26 ℃ compared to that of the transparent glass counterpart.

Synthesis and Characterization of Polymers with Azobenzene and Hexamethylene Groups in Main Chain (주사슬에 아조벤젠기와 헥사메틸렌기를 갖는 고분자의 합성 및 특성)

  • Gu, Su-Jin;Lee, Eung-Jae;Bang, Moon-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.86-92
    • /
    • 2019
  • Polymers with various compositions of azobenzene and hexamethylene groups in the main chain were synthesized by a Schotten-Baumann reaction and their properties were investigated. The chemical structures and physical properties of the synthesized polymers were investigated by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, differential scanning calorimetry, thermogravimetric analysis, polarized optical microscopy, and x-ray diffraction. The polymers showed an inherent viscosity of 1.28-1.36 dl/g and were relatively insoluble in most organic solvents. The melt transition temperature increased rapidly with increasing number of azobenzene groups in the polymer. When the azobenzene monomer content was more than 50 mol%, no melting transition occurred below the decomposition temperature. Among the polymers with a melt transition temperature, the MP-A3C7 and MP-A5C5 polymers were liquid crystalline materials and exhibited a nematic phase with weak liquid crystallinity over a wide liquid crystal temperature range. This difference in the properties of the synthesized polymers is likely due to the changes in intermolecular forces resulting from the linearity and polarity of the trans-form of azobenzene.

The Effect of Stacking Fault on Thermoelectric Property for n-type SiC Semiconductor (N형 SiC 반도체의 열전 물성에 미치는 적층 결함의 영향)

  • Pai, Chul-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.13-19
    • /
    • 2021
  • This study examined the effects of stacking faults on the thermoelectric properties for n-type SiC semiconductors. Porous SiC semiconductors with 30~42 % porosity were fabricated by the heat treatment of pressed ��-SiC powder compacts at 1600~2100 ℃ for 20~120 min in an N2 atmosphere. XRD was performed to examine the stacking faults, lattice strain, and precise lattice parameters of the specimens. The porosity and surface area were analyzed, and SEM, TEM, and HRTEM were carried out to examine the microstructure. The electrical conductivity and the Seebeck coefficient were measured at 550~900 ℃ in an Ar atmosphere. The electrical conductivity increased with increasing heat treatment temperature and time, which might be due to an increase in carrier concentration and improvement in grain-to-grain connectivity. The Seebeck coefficients were negative due to nitrogen behaving as a donor, and their absolute values also increased with increasing heat treatment temperature and time. This might be due to a decrease in stacking fault density, i.e., a decrease in stacking fault density accompanied by grain growth and crystallite growth must have increased the phonon mean free path, enhancing the phonon-drag effect, leading to a larger Seebeck coefficient.