• Title/Summary/Keyword: XPS spectra

Search Result 192, Processing Time 0.033 seconds

The Effect of Plasma on Hydrophilic Surface Modification of LDPE (저밀도 폴리에틸렌의 친수성 표면개질에 미치는 플라즈마의 영향)

  • Hwang, Seung-No;Jeon, Bup-Ju;Jung, Il-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.9 no.3
    • /
    • pp.383-387
    • /
    • 1998
  • The effect of hydrophilic surface modification of low density polyethylene(LDPE) byt the plasma gas($O_2$, $N_2$, and $O_2/N_2$) was investigated from the point of view of the functionalities of the generated LDPE surfaces and the contact angle. By virtue of x-ray photoelectron spectra(XPS) and attenuated total reflectance(FT-IR ATR) analysis, the LDPE surfaces treated with plasma were generated with oxygen functionalities of carbonyl, carboxyl, and the like, nitrogen functionalities by nitrogen plasma and mixing of nitrogen and oxygen plasma treatment were identified with. It was found that nitrogen plasma treatment showed with minimum value at contact angle for rf-power and treatment time, we had obtained optimum condition for hydrophilic surface modification at composite parameter, [(W/FM)t] 520~550GJs/kg.

  • PDF

Photoluminescence properties of eight coordinated terbium(III) complexes (8배위 터븀 (III) 착화합물의 합성과 Photoluminescence 특성)

  • Yun, Myung-Hee;Kim, Yeon-Hee;Choi, Won-Jong;Chang, Choo-Hwan;Choi, Seong-Ho
    • Analytical Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.451-459
    • /
    • 2011
  • Eight coordinated terbium(III) complexes, tris (2-pyrazinecarboxylato)(phenanthroline) terbium(III) [$Tb(pzc)_3$(phen)], tris (5-methyl-2-pyrazinecarboxylato) (phenanthroline) terbium(III) [$Tb(mpzc)_3$(phen)] and tris(2-picolinato) (phenanthroline) terbium(III) [$Tb(pic)_3$(phen)], have been synthesized and characterized by Fourier transform infrared (FT-IR), UV-Visible and X-ray photoelectron spectroscopy. Photoluminescence (PL) spectroscopy shows that these complexes emitted strong green luminescence. When powder samples of the $Tb^{3+}$ complexes are examined using time-resolved spectroscopic analysis, the luminescence lifetimes are found to be 0.87 ms and 1.0 ms, respectively. Thermogravimetric analysis reveals the terbium complexes to have good thermal stability up to $333-379^{\circ}C$. Cyclic voltammetry shows that HOMO-LUMO energy gap of the $Tb^{3+}$ complexes ranges from 4.26~4.41 eV. These values are similar to those obtained from the UV-visible spectra. Overall, the synthesized $Tb^{3+}$ complexes may be useful advanced materials for green light emitting devices.

Study of electronic structures of insulating rare-earth compounds by x-ray photoelectron spectroscopy (광전자분광법을 이용한 희토류 부도체 화합물들의 전자구조 연구)

  • 조은진;오세정
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.4
    • /
    • pp.315-326
    • /
    • 1996
  • The electronic structures of 3d and 4d core-levels of rare-earth atoms in the insulating rare-earth (Sm, Eu, Gd, and Tb) compounds were studied with x-ray photoelectron spectroscopy(XPS). It is shown that the intrinsic satellite structure due to the hybridization disappears for chemically stable-earth trivalent heavy rare-earth insulating compounds as the hybridization between f electrons of rare-earth atoms and p electrons of anion atoms decreases due to the lanthanide contraction. Eu atoms at the surface of the stable insulating trivalent Eu compounds are found to be divalent. The satellite peak of Eu 3d core-level spectra at about 10eV higher binding energy side relative the main peak comes from the multiplet structures of $\underline{3d}4f^6$ configuration. The satellite structure appearing at about 15 eV higher binding energy side relative to the main peak in all insulating rare-earth compounds is due to an energy loss process of creating a plasmon.

  • PDF

Synthesis of Nanoporous F:SnO2 Materials and its Photovoltaic Characteristic (나노 다공질 FTO 제작 및 광전변환특성 고찰)

  • Han, Deok-Woo;Sung, Youl-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.176-181
    • /
    • 2009
  • In this work, a new type of DSCs based on nanoporous FTO structure is being developed for research aimed at low-cost high-efficiency solar cell application. The nanoporous FTO materials have been prepared through the sol-gel combustion method followed by thermal treatment at $450{\sim}850[^{\circ}C]$. The properties of the nanoporous FTO materials were investigated by IR spectra, BET and TEM analyses, and the photovoltaic performance of the prepared DSCs were examined. It can be seen from the result that the nanoporous FTO exhibited good transparent conductive properties, well suited for DSCs application.

Initial oxidation of the alkali metal-adsorbed Si(111) surface (알칼리금속이 흡착된 Si(111)$7\times7$ 계의 초기 산화 과정 연구)

  • 황찬국;안기석;김정선;박래준;이득진;장현덕;박종윤;이순보
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.2
    • /
    • pp.159-164
    • /
    • 1997
  • We have studied initial oxidation of the alkali metal(AM)/Si(111) surface using X-ray photoelectron spectroscopy(XPS) and reflection high energy electron diffraction(RHEED) at room temperature(RT) and high temperature(HT)(300~50$0^{\circ}C$). The oxidation of the Si(111)7$\times$7 surface was promoted by the adsorption of 1 momolayer(ML) AM, whereas no promotion occurred for submonolayer(<0.5 ML) adsorbed Si(111)7$\times$7 surface at RT. O Is core level spectra were measured with increasing oxygen exposure. It was found that the oxygen adsorbed on the Si(111)7$\times$7-AM surface have two different bond configuration, Si-O and Am-O, respectively. From these results, we discussed the role of AM-O bonding in the promoted oxidation. At HT(300~50$0^{\circ}C$), the AM-adsorbed surface became very inactive with the structural transformation to the 3$\times$1-AM. We present the results of the oxidation of the Si(111)3$\times$1-AM(Na, K, Cs) surface.

  • PDF

XPS study of NiO Growth on Ag(100) (Ag(001)에 성장된 NiO 극초박막의 화학 결함 연구)

  • Yang, Seol-Un;Seong, Shi-Jin;Kim, J.S.;Hwang, Han-Na;Hwang, C.C.;Chang, Young J.;Park, Soo-Hyon;Min, H.G.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.5
    • /
    • pp.311-321
    • /
    • 2007
  • We have researched the chemical defects of NiO ultrathin films grown on Ag(001) by x-ray photoelectron spectroscopy. In particular, O 1s and Ni 2p spectra were analyzed consistently with control film thickness, $O_2\;and\;H_2O$ partial pressure and substrate temperature. As a result, we could identify each chemical defect. In addition, we suggest the optimum growth condition to minimize the defect density.

Influence of high energy electron beam treatment on the photocatalytic activity of $TiO_2$ nanoaparticles on carbon fiber

  • Sim, Chae-Won;Kim, Myeong-Ju;Seo, Hyeon-Uk;Kim, Gwang-Dae;;Kim, Dong-Un;Nam, Jong-Won;Jeong, Myeong-Geun;Lee, Byeong-Cheol;Park, Ji-Hyeon;Kim, Yeong-Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.441-441
    • /
    • 2011
  • $TiO_2$ nanoparticles were grown on carbon fiber by atomic later deposition (ALD) with TTIP $(Ti(OCH(CH_3)_2)_4$ and $H_2O$ precusors. After sampe surfaces were treated by electron beam (1 MeV, 5 KGy), an improvement in the photocatalytic reacitivity of $TiO_2$ nanoparticles on carbon fiber was observed. An increase in the population of hydroxyl group on $TiO_2$ particles and the oxidation of carbon fiber were found upon e-beam exposure, whereas there was no noticeable changes of their morphology. It implies that those changes in O and C 1s state of $TiO_2$ particles/carbon fiber induced by e-beam treatment could be related to the enhancement of the photocatalytic activity. In contrast, when carbon fiber fully covered with $TiO_2$ thick films was treated with high-energy electron beam under same conditions, the improvement of photocatalytic activity as well as any changes in XPS spectra (Ti 2p, O 1s and C 1s) could not be found.

  • PDF

Study of Energy Level Alignment at the Interface of P3HT and PCBM Bilayer Deposited by Electrospray Vacuum Deposition

  • Kim, Ji-Hoon;Hong, Jong-Am;Seo, Jae-Won;Kwon, Dae-Gyoen;Park, Yong-Sup
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.134-134
    • /
    • 2012
  • We investigated the interface of poly (3-hexylthiophene) (P3HT) and C61-butyric acid methylester (PCBM) by using photoelectron spectroscopy (PES). These are the most widely used materials for bulk heterojunction (BHJ) organic solar cells due to their high efficiency. Study of the BHJ interfaces is difficult because the organic films are typically prepared by spin coating in ambient conditions. This is incompatible with the interface electronic structure probes such as PES, which requires ultrahigh vacuum conditions. Study of interface requires gradual deposition of thin films that is also incompatible with the spin coating process. In this work, we used electrospray vacuum deposition (EVD) technique to deposit P3HT and PCBM in high vacuum conditions. EVD allows us to form polymer thin films onto ITO substrate in a step-wise manner directly from solutions and to use PES without exposing the sample to the ambient condition. Although the morphology of the EVD deposited P3HT films observed by optical and atomic force microscopes is quite different from that of the spin coated ones, the valence region spectra were similar. PCBM was deposited on the P3HT film in a similar manner and the energy level alignment between these two materials was studied. We discuss the relation between Voc of P3HT:PCBM solar cell and HOMO-LUMO energy offset obtained in this study.

  • PDF

Fabrication of CuO/ZnO Nano-heterostructure by Photochemical Method and Their H2S Gas Sensing Properties

  • Kim, Jae-Hyun;Yong, Ki-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.359-359
    • /
    • 2011
  • This study reports the H2S gas sensing properties of CuO / ZnO nano-hetero structure bundle and the investigation of gas sensing mechanism. The 1-Dimensional ZnO nano-structure was synthesized by hydrothermal method and CuO / ZnO nano-heterostructures were prepared by photo chemical reaction. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) spectra confirmed a well-crystalline ZnO of hexagonal structure. In order to improve the H2S gas sensing properties, simple type of gas sensor was fabricated with ZnO nano-heterostructures, which were prepared by photo-chemical deposition of CuO on the ZnO nanorods bundle. The furnace type gas sensing system was used to characterize sensing properties with diluted H2S gas (50 ppm) balanced air at various operating temperature up to 500$^{\circ}C$. The H2S gas response of ZnO nanorods bundle sensor increased with increasing temperature, which is thought to be due to chemical reaction of nanorods with gas molecules. Through analysis of X-ray photoelectron spectroscopy (XPS), the sensing mechanism of ZnO nanorods bundle sensor was explained by well-known surface reaction between ZnO surface atoms and hydrogen sulfide. However at high sensing temperature, chemical conversion of ZnO nanorods becomes a dominant sensing mechanism in current system. Photo-chemically fabricated CuO/ZnO heteronanostructures show higher gas response and higher current level than ZnO nanorods bundle. The gas sensing mechanism of the heteronanostructure can be explained by the chemical conversion of sensing material through the reaction with H2S gas.

  • PDF

Characterization of arsenic doped p-type ZnO thin film (As 토핑된 p형 ZnO 박막의 특성 분석)

  • Kim, Dong-Lim;Kim, Gun-Hee;Chang, Hyun-Woo;Ahn, Byung-Du;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.53-54
    • /
    • 2006
  • Arsenic doped p-type ZnO thin films have been realized on intrinsic (100) GaAs substrate by RF magnetron sputtering and thermal annealing treatment. p-Type ZnO exhibits the hole concentration of $9.684{\times}10^{19}cm^3$, resistivity of $2.54{\times}10^{-3}{\Omega}cm$, and mobility of $25.37\;cm^2/Vs$. Photoluminescence (PL) spectra of As doped p-type ZnO thin films reveal neutral acceptor bound exciton ($A^{0}X$) of 3.3437 eV and a transition between free electrons and acceptor levels (FA) of 3.2924 eV. Calculated acceptor binding energy ($E_A$) is about 0.1455 eV. Thermal activation and doping mechanism of this film have been suggested by using X-ray photoelectron spectroscopy (XPS). p-Type formation mechanism of As doped ZnO thin film is more related to the complex model, namely, $As_{Zn}-2V_{Zn}$, in which the As substitutes on the Zn site, rather than simple model, Aso, in which the As substitutes on the O site. ZnO-based p-n junction was fabricated by the deposition of an undoped n-type ZnO layer on an As doped p-type ZnO layer.

  • PDF