• Title/Summary/Keyword: XOR learning

Search Result 26, Processing Time 0.033 seconds

An Enhanced Fuzzy Single Layer Perceptron With Linear Activation Function (선형 활성화 함수를 이용한 개선된 퍼지 단층 퍼셉트론)

  • Park, Choong-Shik;Cho, Jae-Hyun;Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.7
    • /
    • pp.1387-1393
    • /
    • 2007
  • Even if the linearly separable patterns can be classified by the conventional single layer perceptron, the non-linear problems such as XOR can not be classified by it. A fuzzy single layer perceptron can solve the conventional XOR problems by applying fuzzy membership functions. However, in the fuzzy single layer perception, there are a couple disadvantages which are a decision boundary is sometimes vibrating and a convergence may be extremely lowered according to the scopes of the initial values and learning rates. In this paper, for these reasons, we proposed an enhanced fuzzy single layer perceptron algorithm that can prevent from vibration the decision boundary by introducing a bias term and can also reduce the learn time by applying the modified delta rule which include the learning rates and the momentum concept and applying the new linear activation function. Consequently, the simulation results of the XOR and pattern classification problems presented that the proposed method provided the shorter learning time and better convergence than the conventional fuzzy single layer perceptron.

Fuzzy Single Layer Perceptron using Dynamic Adjustment of Threshold (동적 역치 조정을 이용한 퍼지 단층 퍼셉트론)

  • Cho Jae-Hyun;Kim Kwang-Baek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.5 s.37
    • /
    • pp.11-16
    • /
    • 2005
  • Recently, there are a lot of endeavor to implement a fuzzy theory to artificial neural network. Goh proposed the fuzzy single layer perceptron algorithm and advanced fuzzy perceptron based on the generalized delta rule to solve the XOR Problem and the classical Problem. However, it causes an increased amount of computation and some difficulties in application of the complicated image recognition. In this paper, we propose an enhanced fuzzy single layer Perceptron using the dynamic adjustment of threshold. This method is applied to the XOR problem, which used as the benchmark in the field of pattern recognition. The method is also applied to the recognition of digital image for image application. In a result of experiment, it does not always guarantee the convergence. However, the network show improved the learning time and has the high convergence rate.

  • PDF

Enhanced Fuzzy Single Layer Perceptron

  • Chae, Gyoo-Yong;Eom, Sang-Hee;Kim, Kwang-Baek
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.1
    • /
    • pp.36-39
    • /
    • 2004
  • In this paper, a method of improving the learning speed and convergence rate is proposed to exploit the advantages of artificial neural networks and neuro-fuzzy systems. This method is applied to the XOR problem, n bit parity problem, which is used as the benchmark in the field of pattern recognition. The method is also applied to the recognition of digital image for practical image application. As a result of experiment, it does not always guarantee convergence. However, the network showed considerable improvement in learning time and has a high convergence rate. The proposed network can be extended to any number of layers. When we consider only the case of the single layer, the networks had the capability of high speed during the learning process and rapid processing on huge images.

Using Higher Order Neuron on the Supervised Learning Machine of Kohonen Feature Map (고차 뉴런을 이용한 교사 학습기의 Kohonen Feature Map)

  • Jung, Jong-Soo;Hagiwara, Masafumi
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.5
    • /
    • pp.277-282
    • /
    • 2003
  • In this paper we propose Using Higher Order Neuron on the Supervised Learning Machine of the Kohonen Feature Map. The architecture of proposed model adopts the higher order neuron in the input layer of Kohonen Feature Map as a Supervised Learning Machine. It is able to estimate boundary on input pattern space because or the higher order neuron. However, it suffers from a problem that the number of neuron weight increases because of the higher order neuron in the input layer. In this time, we solved this problem by placing the second order neuron among the higher order neuron. The feature of the higher order neuron can be mapped similar inputs on the Kohonen Feature Map. It also is the network with topological mapping. We have simulated the proposed model in respect of the recognition rate by XOR problem, discrimination of 20 alphabet patterns, Mirror Symmetry problem, and numerical letters Pattern Problem.

Learning Ability of Deterministic Boltzmann Machine with Non-Monotonic Neurons in Hidden Layer (은닉층에 비단조 뉴런을 갖는 결정론적 볼츠만 머신의 학습능력에 관한 연구)

  • 박철영
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.6
    • /
    • pp.505-509
    • /
    • 2001
  • In this paper, we evaluate the learning ability of non-monotonic DMM(Deterministic Boltzmann Machine) network through numerical simulations. The simulation results show that the proposed system has higher performance than monotonic DBM network model. Non-monotonic DBM network also show an interesting result that network itself adjusts the number of hidden layer neurons. DBM network can be realized with fewer components than other neural network models. These results enhance the utilization of non-monotonic neurons in the large scale integration of neuro-chips.

  • PDF

Enhanced Backpropagation Algorithm by Auto-Tuning Method of Learning Rate using Fuzzy Control System (퍼지 제어 시스템을 이용한 학습률 자동 조정 방법에 의한 개선된 역전파 알고리즘)

  • 김광백;박충식
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.2
    • /
    • pp.464-470
    • /
    • 2004
  • We propose an enhanced backpropagation algorithm by auto-tuning of learning rate using fuzzy control system for performance improvement of backpropagation algorithm. We propose two methods, which improve local minima and loaming times problem. First, if absolute value of difference between target and actual output value is smaller than $\varepsilon$ or the same, we define it as correctness. And if bigger than $\varepsilon$, we define it as incorrectness. Second, instead of choosing a fixed learning rate, the proposed method is used to dynamically adjust learning rate using fuzzy control system. The inputs of fuzzy control system are number of correctness and incorrectness, and the output is the Loaming rate. For the evaluation of performance of the proposed method, we applied the XOR problem and numeral patterns classification The experimentation results showed that the proposed method has improved the performance compared to the conventional backpropagatiot the backpropagation with momentum, and the Jacob's delta-bar-delta method.

A Design Method for Error Backpropagation neural networks using Voronoi Diagram (보로노이 공간분류를 이용한 오류 역전파 신경망의 설계방법)

  • 김홍기
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.5
    • /
    • pp.490-495
    • /
    • 1999
  • In this paper. a learning method VoD-EBP for neural networks is proposed, which learn patterns by error back propagation. Based on Voronoi diagram, the method initializes the weights of the neural networks systematically, wh~ch results in faster learning speed and alleviated local optimum problem. The method also shows better the reliability of the design of neural network because proper number of hidden nodes are determined from the analysis of Voronoi diagram. For testing the performance, this paper shows the results of solving the XOR problem and the parity problem. The results were showed faster learning speed than ordinary error back propagation algorithm. In solving the problem, local optimum problems have not been observed.

  • PDF

A study for learning neural-network using internal representation (은닉층에 대한 의미부여를 통한 학습에 대한 연구)

  • 기세훈;안상철;권욱현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.842-846
    • /
    • 1993
  • Because of complexity, neural network is difficult to learn. So if internal representation[1] can be performed successfully, it is possible to use perceptron learning rule. As a result, learning is easier. Therefore the method of internal representations applied to the "XOR" problem, and the "spirals" problem. And then using the above results, the structure of neural network for computing is embodied.mputing is embodied.

  • PDF

Development of a Convergent Teaching-Learning Materials based on Logic Gates using Water-flow for the Secondary Informatics Gifted Students (물의 흐름을 이용한 논리 게이트 기반 융합형 중등 정보과학 영재 교수·학습 자료 개발)

  • Lee, Hyung-Bong;Kwon, Ki-Hyeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.12
    • /
    • pp.369-384
    • /
    • 2014
  • Since the start of gifted education in 2002, educational support system has now been established, and sufficient growth in quantitative aspects has been achieved in Korea. On the other hand, they report that there are insufficient points in terms of education quality. In other words, most of the gifted education simply expands knowledge by prior-learning. In order to improve the quality of gifted education, they should enhance critical-thinking and creativity able to apply interdisciplinary principles or phenomena for solving problems. In this study, we designed and developed a convergent teaching-learning materials based on the concept of integrated education, which explore the process that basic logic operations such as AND, OR, XOR do the role of computer cells. A survey result showed that student satisfaction(usefulness, understanding, interest) of the materials is significantly higher than that of other traditional learning topics, and the design intent was met.

Improving Levenberg-Marquardt algorithm using the principal submatrix of Jacobian matrix (Jacobian 행렬의 주부분 행렬을 이용한 Levenberg-Marquardt 알고리즘의 개선)

  • Kwak, Young-Tae;Shin, Jung-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.8
    • /
    • pp.11-18
    • /
    • 2009
  • This paper proposes the way of improving learning speed in Levenberg-Marquardt algorithm using the principal submatrix of Jacobian matrix. The Levenberg-Marquardt learning uses Jacobian matrix for Hessian matrix to get the second derivative of an error function. To make the Jacobian matrix an invertible matrix. the Levenberg-Marquardt learning must increase or decrease ${\mu}$ and recalculate the inverse matrix of the Jacobian matrix due to these changes of ${\mu}$. Therefore, to have the proper ${\mu}$, we create the principal submatrix of Jacobian matrix and set the ${\mu}$ as the eigenvalues sum of the principal submatrix. which can make learning speed improve without calculating an additional inverse matrix. We also showed that our method was able to improve learning speed in both a generalized XOR problem and a handwritten digit recognition problem.