• Title/Summary/Keyword: XML Clustering

Search Result 45, Processing Time 0.04 seconds

A Clustering Technique using Common Structures of XML Documents (XML 문서의 공통 구조를 이용한 클러스터링 기법)

  • Hwang, Jeong-Hee;Ryu, Keun-Ho
    • Journal of KIISE:Databases
    • /
    • v.32 no.6
    • /
    • pp.650-661
    • /
    • 2005
  • As the Internet is growing, the use of XML which is a standard of semi-structured document is increasing. Therefore, there are on going works about integration and retrieval of XML documents. However, the basis of efficient integration and retrieval of documents is to cluster XML documents with similar structure. The conventional XML clustering approaches use the hierarchical clustering algorithm that produces the demanded number of clusters through repeated merge, but it have some problems that it is difficult to compute the similarity between XML documents and it costs much time to compare similarity repeatedly. In order to address this problem, we use clustering algorithm for transactional data that is scale for large size of data. In this paper we use common structures from XML documents that don't have DTD or schema. In order to use common structures of XML document, we extract representative structures by decomposing the structure from a tree model expressing the XML document, and we perform clustering with the extracted structure. Besides, we show efficiency of proposed method by comparing and analyzing with the previous method.

Clustering XML Documents Considering The Weight of Large Items in Clusters (클러스터의 주요항목 가중치 기반 XML 문서 클러스터링)

  • Hwang, Jeong-Hee
    • The KIPS Transactions:PartD
    • /
    • v.14D no.1 s.111
    • /
    • pp.1-8
    • /
    • 2007
  • As the web document of XML, an exchange language of data in the advanced Internet, is increasing, a target of information retrieval becomes the web documents. Therefore, there we researches on structure, integration and retrieval of XML documents. This paper proposes a clustering method of XML documents based on frequent structures, as a basic research to efficiently process query and retrieval. To do so, first, trees representing XML documents are decomposed and we extract frequent structures from them. Second, we perform clustering considering the weight of large items to adjust cluster creation and cluster cohesion, considering frequent structures as items of transactions. Third, we show the excellence of our method through some experiments which compare which the previous methods.

A Clustering Method Based on Path Similarities of XML Data (XML 데이타의 경로 유사성에 기반한 클러스터링 기법)

  • Choi Il-Hwan;Moon Bong-Ki;Kim Hyoung-Joo
    • Journal of KIISE:Databases
    • /
    • v.33 no.3
    • /
    • pp.342-352
    • /
    • 2006
  • Current studies on storing XML data are focused on either mapping XML data to existing RDBMS efficiently or developing a native XML storage. Some native XML storages store each XML node with parsed object form. Clustering, the physical arrangement of each object, can be an important factor to increase the performance with this storing method. In this paper, we propose re-clustering techniques that can store an XML document efficiently. Proposed clustering technique uses path similarities among data nodes, which can reduce page I/Os when returning query results. And proposed technique can process a path query only using small number of clusters as possible instead of using all clusters. This enables efficient processing of path query because we can reduce search space by skipping unnecessary data. Finally, we apply existing clustering techniques to store XML data and compare the performance with proposed technique. Our results show that the performance of XML storage can be improved by using a proper clustering technique.

An Incremental Clustering Technique of XML Documents using Cluster Histograms (클러스터의 히스토그램을 이용한 XML 문서의 점진적 클러스터링 기법)

  • Hwang, Jeong-Hee
    • Journal of KIISE:Databases
    • /
    • v.34 no.3
    • /
    • pp.261-269
    • /
    • 2007
  • As a basic research to integrate and to retrieve XML documents efficiently, this paper proposes a clustering method by structures of XML documents. We apply an algorithm processing the many transaction data to the clustering of XML documents, which is a quite different method from the previous algorithms measuring structure similarity. Our method performs the clustering of XML documents not only using the cluster histograms that represent the distribution of items in clusters but also considering the global cluster cohesion. We compare the proposed method with the existing techniques by performing experiments. Experiments show that our method not only creates good quality clusters but also improves the processing time.

An Efficient Algorithm for Clustering XML Schemas (XML 스키마 클러스터링을 위한 효율적인 알고리즘)

  • Rhim Tae-Woo;Lee Kyong-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.7
    • /
    • pp.857-868
    • /
    • 2005
  • Schema clustering is important as a prerequisite to the integration of XML schemas. This paper presents an efficient method for clustering XML schemas. The proposed method first computes similarities among schemas. The similarity is defined by the size of the common structure between two schemas under the assumption that the schemas with less cost to be integrated are more similar. Specifically, we extract one-to-one matchings between paths with the largest number of corresponding elements. Finally, a hierarchical clustering method is applied to the value of similarity. Experimental results with many XML schemas show that the method has peformed better compared with previous works, resulting in a Precision of $99\%$ and a rate of clustering of $93\%$ in average.

  • PDF

Incremental Clustering of XML Documents based on Similar Structures (유사 구조 기반 XML 문서의 점진적 클러스터링)

  • Hwang Jeong Hee;Ryu Keun Ho
    • Journal of KIISE:Databases
    • /
    • v.31 no.6
    • /
    • pp.699-709
    • /
    • 2004
  • XML is increasingly important in data exchange and information management. Starting point for retrieving the structure and integrating the documents efficiently is clustering the documents that have similar structure. The reason is that we can retrieve the documents more flexible and faster than the method treating the whole documents that have different structure. Therefore, in this paper, we propose the similar structure-based incremental clustering method useful for retrieving the structure of XML documents and integrating them. As a novel method, we use a clustering algorithm for transactional data that facilitates the large number of data, which is quite different from the existing methods that measure the similarity between documents, using vector. We first extract the representative structures of XML documents using sequential pattern algorithm, and then we perform the similar structure based document clustering, assuming that the document as a transaction, the representative structure of the document as the items of the transaction. In addition, we define the cluster cohesion and inter-cluster similarity, and analyze the efficiency of the Proposed method through comparing with the existing method by experiments.

XML Document Clustering Based on Sequential Pattern (순차패턴에 기반한 XML 문서 클러스터링)

  • Hwang, Jeong-Hee;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.10D no.7
    • /
    • pp.1093-1102
    • /
    • 2003
  • As the use of internet is growing, the amount of information is increasing rapidly and XML that is a standard of the web data has the property of flexibility of data representation. Therefore electronic document systems based on web, such as EDMS (Electronic Document Management System), ebXML (e-business extensible Markup Language), have been adopting XML as the method for exchange and standard of documents. So research on the method which can manage and search structural XML documents in an effective wav is required. In this paper we propose the clustering method based on structural similarity among the many XML documents, using typical structures extracted from each document by sequential pattern mining in pre-clustering process. The proposed algorithm improves the accuracy of clustering by computing cost considering cluster cohesion and inter-cluster similarity.

A Hierarchical Clustering Technique of XML Documents based on Representative Path (대표 경로에 기반한 XML 문서의 계층 군집화 기법)

  • Kim, Woo-Saeng
    • Journal of Internet Computing and Services
    • /
    • v.10 no.3
    • /
    • pp.141-150
    • /
    • 2009
  • XML is increasingly important in data exchange and information management. A large amount of efforts have been spent in developing efficient techniques for accessing, querying, and storing XML documents. In this paper, we propose a new method to cluster XML documents efficiently. A new prepresentative path called a virtul path which can represent both the structure and the contents of a XML document is proposed for the feature of a XML document. A method to apply the well known hierarchical clustering techniques to the representative paths to cluster XML documents is also proposed. The experiment shows that the true clusters are formed in a compact shape when a virtual path is used for the feature of a XML document.

  • PDF

XML Documents Clustering Technique Based on Bit Vector (비트벡터에 기반한 XML 문서 군집화 기법)

  • Kim, Woo-Saeng
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.5
    • /
    • pp.10-16
    • /
    • 2010
  • XML is increasingly important in data exchange and information management. A large amount of efforts have been spent in developing efficient techniques for accessing, querying, and storing XML documents. In this paper, we propose a new method to cluster XML documents efficiently. A bit vector which represents a XML document is proposed to cluster the XML documents. The similarity between two XML documents is measured by a bit-wise AND operation between two corresponding bit vectors. The experiment shows that the clusters are formed well and efficiently when a bit vector is used for the feature of a XML document.

An Unsupervised Clustering Technique of XML Documents based on Function Transform and FFT (함수 변환과 FFT에 기반한 조정자가 없는 XML 문서 클러스터링 기법)

  • Lee, Ho-Suk
    • The KIPS Transactions:PartD
    • /
    • v.14D no.2
    • /
    • pp.169-180
    • /
    • 2007
  • This paper discusses a new unsupervised XML document clustering technique based on the function transform and FFT(Fast Fourier Transform). An XML document is transformed into a discrete function based on the hierarchical nesting structure of the elements. The discrete function is, then, transformed into vectors using FFT. The vectors of two documents are compared using a weighted Euclidean distance metric. If the comparison is lower than the pre specified threshold, the two documents are considered similar in the structure and are grouped into the same cluster. XML clustering can be useful for the storage and searching of XML documents. The experiments were conducted with 800 synthetic documents and also with 520 real documents. The experiments showed that the function transform and FFT are effective for the incremental and unsupervised clustering of XML documents similar in structure.