• Title/Summary/Keyword: XGboost

Search Result 238, Processing Time 0.025 seconds

Analysis of Hypertension Risk Factors by Life Cycle Based on Machine Learning (머신러닝 기반 생애주기별 고혈압 위험 요인 분석)

  • Kang, SeongAn;Kim, SoHui;Ryu, Min Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.5
    • /
    • pp.73-82
    • /
    • 2022
  • Chronic diseases such as hypertension require a differentiated approach according to age and life cycle. Chronic diseases such as hypertension require differentiated management according to the life cycle. It is also known that the cause of hypertension is a combination of various factors. This study uses machine learning prediction techniques to analyze various factors affecting hypertension by life cycle. To this end, a total of 35 variables were used through preprocessing and variable selection processes for the National Health and Nutrition Survey data of the Korea Centers for Disease Control and Prevention. As a result of the study, among the tree-based machine learning models, XGBoost was found to have high predictive performance in both middle and old age. Looking at the risk factors for hypertension by life cycle, individual characteristic factors, genetic factors, and nutritional intake factors were found to be risk factors for hypertension in the middle age, and nutritional intake factors, dietary factors, and lifestyle factors were derived as risk factors for hypertension. The results of this study are expected to be used as basic data useful for hypertension management by life cycle.

Method of Similarity Hash-Based Malware Family Classification (유사성 해시 기반 악성코드 유형 분류 기법)

  • Kim, Yun-jeong;Kim, Moon-sun;Lee, Man-hee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.5
    • /
    • pp.945-954
    • /
    • 2022
  • Billions of malicious codes are detected every year, of which only 0.01% are new types of malware. In this situation, an effective malware type classification tool is needed, but previous studies have limitations in quickly analyzing a large amount of malicious code because it requires a complex and massive amount of data pre-processing. To solve this problem, this paper proposes a method to classify the types of malicious code based on the similarity hash without complex data preprocessing. This approach trains the XGBoost model based on the similarity hash information of the malware. To evaluate this approach, we used the BIG-15 dataset, which is widely used in the field of malware classification. As a result, the malicious code was classified with an accuracy of 98.9% also, identified 3,432 benign files with 100% accuracy. This result is superior to most recent studies using complex preprocessing and deep learning models. Therefore, it is expected that more efficient malware classification is possible using the proposed approach.

Imbalanced Data Improvement Techniques Based on SMOTE and Light GBM (SMOTE와 Light GBM 기반의 불균형 데이터 개선 기법)

  • Young-Jin, Han;In-Whee, Joe
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.12
    • /
    • pp.445-452
    • /
    • 2022
  • Class distribution of unbalanced data is an important part of the digital world and is a significant part of cybersecurity. Abnormal activity of unbalanced data should be found and problems solved. Although a system capable of tracking patterns in all transactions is needed, machine learning with disproportionate data, which typically has abnormal patterns, can ignore and degrade performance for minority layers, and predictive models can be inaccurately biased. In this paper, we predict target variables and improve accuracy by combining estimates using Synthetic Minority Oversampling Technique (SMOTE) and Light GBM algorithms as an approach to address unbalanced datasets. Experimental results were compared with logistic regression, decision tree, KNN, Random Forest, and XGBoost algorithms. The performance was similar in accuracy and reproduction rate, but in precision, two algorithms performed at Random Forest 80.76% and Light GBM 97.16%, and in F1-score, Random Forest 84.67% and Light GBM 91.96%. As a result of this experiment, it was confirmed that Light GBM's performance was similar without deviation or improved by up to 16% compared to five algorithms.

Machine Learning Model for Predicting the Residual Useful Lifetime of the CNC Milling Insert (공작기계의 절삭용 인서트의 잔여 유효 수명 예측 모형)

  • Won-Gun Choi;Heungseob Kim;Bong Jin Ko
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.1
    • /
    • pp.111-118
    • /
    • 2023
  • For the implementation of a smart factory, it is necessary to collect data by connecting various sensors and devices in the manufacturing environment and to diagnose or predict failures in production facilities through data analysis. In this paper, to predict the residual useful lifetime of milling insert used for machining products in CNC machine, weight k-NN algorithm, Decision Tree, SVR, XGBoost, Random forest, 1D-CNN, and frequency spectrum based on vibration signal are investigated. As the results of the paper, the frequency spectrum does not provide a reliable criterion for an accurate prediction of the residual useful lifetime of an insert. And the weighted k-nearest neighbor algorithm performed best with an MAE of 0.0013, MSE of 0.004, and RMSE of 0.0192. This is an error of 0.001 seconds of the remaining useful lifetime of the insert predicted by the weighted-nearest neighbor algorithm, and it is considered to be a level that can be applied to actual industrial sites.

Hybrid phishing site detection system with GRU-based shortened URL determination technique (GRU 기반 단축 URL 판별 기법을 적용한 하이브리드 피싱 사이트 탐지 시스템)

  • Hae-Soo Kim;Mi-Hui Kim
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.213-219
    • /
    • 2023
  • According to statistics from the National Police Agency, smishing crimes using texts or messengers have increased dramatically since COVID-19. In addition, most of the cases of impersonation of public institutions reported to agency were related to vaccination and reward, and many methods were used to trick people into clicking on fake URLs (Uniform Resource Locators). When detecting them, URL-based detection methods cannot detect them properly if the information of the URL is hidden, and content-based detection methods are slow and use a lot of resources. In this paper, we propose a system for URL-based detection using transformer for regular URLs and content-based detection using XGBoost for shortened URLs through the process of determining shortened URLs using GRU(Gated Recurrent Units). The F1-Score of the proposed detection system was 94.86, and its average processing time was 5.4 seconds.

A Study on Classification Models for Predicting Bankruptcy Based on XAI (XAI 기반 기업부도예측 분류모델 연구)

  • Jihong Kim;Nammee Moon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.8
    • /
    • pp.333-340
    • /
    • 2023
  • Efficient prediction of corporate bankruptcy is an important part of making appropriate lending decisions for financial institutions and reducing loan default rates. In many studies, classification models using artificial intelligence technology have been used. In the financial industry, even if the performance of the new predictive models is excellent, it should be accompanied by an intuitive explanation of the basis on which the result was determined. Recently, the US, EU, and South Korea have commonly presented the right to request explanations of algorithms, so transparency in the use of AI in the financial sector must be secured. In this paper, an artificial intelligence-based interpretable classification prediction model was proposed using corporate bankruptcy data that was open to the outside world. First, data preprocessing, 5-fold cross-validation, etc. were performed, and classification performance was compared through optimization of 10 supervised learning classification models such as logistic regression, SVM, XGBoost, and LightGBM. As a result, LightGBM was confirmed as the best performance model, and SHAP, an explainable artificial intelligence technique, was applied to provide a post-explanation of the bankruptcy prediction process.

Seoul Local Brand Alley Commercial Area Recommendation System Design Using Machine Learning (머신러닝 기반 서울시 로컬브랜드 골목상권 추천시스템 설계)

  • Jiyeon, Kim;Hyoseon, Jang;Minseo, Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.101-109
    • /
    • 2023
  • According to data released by the Covid 19 Self-Employed Emergency Response Committee, 95.6% of small business sales due to Covid 19 have decreased over the past two years, and the damage has further increased due to social distancing for quarantine. However, as all social distancing guidelines have rebeen lifted, and the commercial district has been revitalized, the Seoul Metropolitan Government is pushing for a project to foster local brand commercial districts so that small business owners or prospective founders who have closed their businesses due to the prolonged COVID-19. Therefore, this study propose the model that recommends alley commercial districts suitable for founders among the five alley commercial districts selected for the project to foster local brand commercial districts in Seoul. The Seoul Metropolitan Government's local brand alley commercial recommendation system recommends major population age groups and major industries in the commercial district by combining the population perspective model using Xgboost and the commercial district characteristic model using Decision Tree.

Injection Process Yield Improvement Methodology Based on eXplainable Artificial Intelligence (XAI) Algorithm (XAI(eXplainable Artificial Intelligence) 알고리즘 기반 사출 공정 수율 개선 방법론)

  • Ji-Soo Hong;Yong-Min Hong;Seung-Yong Oh;Tae-Ho Kang;Hyeon-Jeong Lee;Sung-Woo Kang
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.1
    • /
    • pp.55-65
    • /
    • 2023
  • Purpose: The purpose of this study is to propose an optimization process to improve product yield in the process using process data. Recently, research for low-cost and high-efficiency production in the manufacturing process using machine learning or deep learning has continued. Therefore, this study derives major variables that affect product defects in the manufacturing process using eXplainable Artificial Intelligence(XAI) method. After that, the optimal range of the variables is presented to propose a methodology for improving product yield. Methods: This study is conducted using the injection molding machine AI dataset released on the Korea AI Manufacturing Platform(KAMP) organized by KAIST. Using the XAI-based SHAP method, major variables affecting product defects are extracted from each process data. XGBoost and LightGBM were used as learning algorithms, 5-6 variables are extracted as the main process variables for the injection process. Subsequently, the optimal control range of each process variable is presented using the ICE method. Finally, the product yield improvement methodology of this study is proposed through a validation process using Test Data. Results: The results of this study are as follows. In the injection process data, it was confirmed that XGBoost had an improvement defect rate of 0.21% and LightGBM had an improvement defect rate of 0.29%, which were improved by 0.79%p and 0.71%p, respectively, compared to the existing defect rate of 1.00%. Conclusion: This study is a case study. A research methodology was proposed in the injection process, and it was confirmed that the product yield was improved through verification.

Machine Learning-Based Prediction Technology for Medical Treatment Period of Automobile Insurance Accident Patients (머신러닝 기반의 자동차보험 사고 환자의 진료 기간 예측 기술)

  • Kyung-Keun Byun;Doeg-Gyu Lee;Hyung-Dong Lee
    • Convergence Security Journal
    • /
    • v.23 no.1
    • /
    • pp.89-95
    • /
    • 2023
  • In order to help reduce the medical expenses of patients with auto insurance accidents, this study predicted the treatment period, which is the most important factor in the medical expenses of patients in their 40s and 50s, and analyzed the factors affecting the treatment period. To this end, a mechine learning model using five algorithms such as Decision Tree was created, and its performance was compared and analyzed between models. There were three algorithms that showed good performance including Decison Tree, Gradient Boost, and XGBoost. In addition, as a result of analyzing the factors affecting the prediction of the treatment period, the type of hospital, the treatment area, age, and gender were found. Through these studies, easy research methods such as the use of AutoML were presented, and we hope that the results of this study will help policies to reduce medical expenses for automobile insurance accidents.

Development of machine learning model for reefer container failure determination and cause analysis with unbalanced data (불균형 데이터를 갖는 냉동 컨테이너 고장 판별 및 원인 분석을 위한 기계학습 모형 개발)

  • Lee, Huiwon;Park, Sungho;Lee, Seunghyun;Lee, Seungjae;Lee, Kangbae
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.1
    • /
    • pp.23-30
    • /
    • 2022
  • The failure of the reefer container causes a great loss of cost, but the current reefer container alarm system is inefficient. Existing studies using simulation data of refrigeration systems exist, but studies using actual operation data of refrigeration containers are lacking. Therefore, this study classified the causes of failure using actual refrigerated container operation data. Data imbalance occurred in the actual data, and the data imbalance problem was solved by comparing the logistic regression analysis with ENN-SMOTE and class weight with the 2-stage algorithm developed in this study. The 2-stage algorithm uses XGboost, LGBoost, and DNN to classify faults and normalities in the first step, and to classify the causes of faults in the second step. The model using LGBoost in the 2-stage algorithm was the best with 99.16% accuracy. This study proposes a final model using a two-stage algorithm to solve data imbalance, which is thought to be applicable to other industries.