• Title/Summary/Keyword: XBP1

Search Result 54, Processing Time 0.017 seconds

Effect of exercise and diet intervention on endoplasmic reticulum (ER) stress in rat skeletal muscle and adipose tissue (운동부하가 고지방식이 유도 비만흰쥐의 골격근 및 지방조직의 ER (Endoplasmic Reticulum)스트레스에 미치는 영향)

  • Kim, Gi Chool;Park, Kyung Sil;Kim, Hyun Kook;Kim, Ki Hoon
    • Journal of Nutrition and Health
    • /
    • v.45 no.5
    • /
    • pp.420-428
    • /
    • 2012
  • The purpose of this study is to investigate the effects of eight weeks high fat intake and regular exercise in skeletal muscle and adipose tissue for Endoplasmic Reticulum (ER) stress in rats. This experiment involved 32 subjects (sprague-dawley rats) divided into four groups as follows: chow group (Chow, n = 8), chow and exercise group (Chow + EX, n = 8), high fat diet-induced hyperlipidemia group (HF, n = 8), and HF and exercise group (HF + EX, n = 8). As a result, there were significant decrease in body weight and abdominal fat, and blood lipid level was significantly improved by exercise for eight weeks (p < .05). There were variables changed about the skeletal muscle and ER stress in GRP78, XBP-1, ATF4, CHOP and JNK mRNA. There increased in mRNA factor by exercise, especially GRP78, and ATF4 mRNA were significantly increased in exercise (p < .05). However, there were increased in adipose tissue by exercise and there were significantly decreased in mRNA factor by high fat diet (p < .05). Consequently, this study suggests that the consistent exercise was more improved of obesity factor, such as dyslipidemia, hyperlipidemia, hyperglycemia, as well as body weight or abdominal fat. The response of ER stress in adipose tissue and skeletal muscle were more sensitive in exercise than high fat diet feed.

Endoplasmic Reticulum Stress Response and Apoptosis via the CoCl2-Induced Hypoxia in Neuronal Cells (CoCl2 처리로 유도된 hypoxia상태에서 세포자살과 ER stress에 관련된 인자의 발현)

  • Kim, Seon-Hwan;Kwon, Hyon-Jo;Koh, Hyeon-Song;Song, Shi-Hun;Kwon, Ki-Sang;Kwon, O-Yu;Choi, Seung-Won
    • Journal of Life Science
    • /
    • v.20 no.12
    • /
    • pp.1820-1828
    • /
    • 2010
  • Cobalt(II) chloride, a chemical compound with the formula$CoCl_2$, has been widely used in the treatment of anemia, as a chemical agent for the induction of hypoxia in cell cultures, and is known to activate hypoxic signaling. However, excessive exposure to cobalt is associated with several clinical conditions, including asthma, pneumonia, and hematological abnormalities, and can lead to tissue and cellular toxicity. It is also known to induce apoptosis. One of the questions was that of whether $CoCl_2$ might induce apoptosis via endoplasmic reticulum (ER) stress in neurons. To address this question, first, the level of DNA fragmentation was measured for assay of apoptotic rates using $CoCl_2$ with neuron PC12 cells. After confirmation of apoptosis inductions, under the same conditions, the expression levels of ER stress associated factors [ER chaperones Bip, calnexin, ERp72, ERp29, PDI, and ER membrane kinases (IRE1, ATF6, PERK)] were examined by RT-PCR and Western blotting. These results indicated that apoptosis is induced through activation of ER membrane kinases via ER stress. In conclusion, during induction of apoptosis through $CoCl_2$-induced hypoxia in neuron PC12 cells, ER membrane kinase of IRE1 was dominantly up-expressed, and, consecutively, TRAF2, which has been suggested to be one of the links connecting apoptosis and ER stress, was strongly up-expressed.

Compound K induced apoptosis via endoplasmic reticulum Ca2+ release through ryanodine receptor in human lung cancer cells

  • Shin, Dong-Hyun;Leem, Dong-Gyu;Shin, Ji-Sun;Kim, Joo-Il;Kim, Kyung-Tack;Choi, Sang Yoon;Lee, Myung-Hee;Choi, Jung-Hye;Lee, Kyung-Tae
    • Journal of Ginseng Research
    • /
    • v.42 no.2
    • /
    • pp.165-174
    • /
    • 2018
  • Background: Extended endoplasmic reticulum (ER) stress may initiate apoptotic pathways in cancer cells, and ER stress has been reported to possibly increase tumor death in cancer therapy. We previously reported that caspase-8 played an important role in compound K-induced apoptosis via activation of caspase-3 directly or indirectly through Bid cleavage, cytochrome c release, and caspase-9 activation in HL-60 human leukemia cells. The mechanisms leading to apoptosis in A549 and SK-MES-1 human lung cancer cells and the role of ER stress have not yet been understood. Methods: The apoptotic effects of compound K were analyzed using flow cytometry, and the changes in protein levels were determined using Western blot analysis. The intracellular calcium levels were monitored by staining with Fura-2/AM and Fluo-3/AM. Results: Compound K-induced ER stress was confirmed through increased phosphorylation of $eIF2{\alpha}$ and protein levels of GRP78/BiP, XBP-1S, and $IRE1{\alpha}$ in human lung cancer cells. Moreover, compound-K led to the accumulation of intracellular calcium and an increase in m-calpain activities that were both significantly inhibited by pretreatment either with BAPTA-AM (an intracellular $Ca^{2+}$ chelator) or dantrolene (an RyR channel antagonist). These results were correlated with the outcome that compound K induced ER stress-related apoptosis through caspase-12, as z-ATAD-fmk (a specific inhibitor of caspase-12) partially ameliorated this effect. Interestingly, 4-PBA (ER stress inhibitor) dramatically improved the compound K-induced apoptosis. Conclusion: Cell survival and intracellular $Ca^{2+}$ homeostasis during ER stress in human lung cancer cells are important factors in the induction of the compound K-induced apoptotic pathway.

Involvement of Endoplasmic Reticulum Stress Response in the Neuronal Differentiation

  • Cho, Yoon-Mi;Jang, Yoon-Seong;Jang, Young-Min;Seo, Jin-Young;Kim, Ho-Shik;Lee, Jeong-Hwa;Jeong, Seong-Whan;Kim, In-Kyung;Kwon, Oh-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.6
    • /
    • pp.239-246
    • /
    • 2007
  • Expressions of endoplasmic reticulum stress response (ERSR) genes were examined during the neuronal differentiation of rat fetal cortical precursor cells (rCPC) and rat pheochromocytoma PC12 cells. When rCPC were differentiated into neuronal cells for 7 days, early stem cell marker, nest in, expression was decreased from day 4, and neuronal markers such as neurofilament-L, -M and Tuj1 were increased after day 4. In this condition, expressions of BIP, ATF6, and phosphorylated PERK as well as their down stream signaling molecules such as CHOP, ATF4, XBP1, GADD34, Nrf2 and $p58^{IPK}$ were significantly increased, suggesting the induction of ERSR during neuronal differentiation of rCPC. ERSR was also induced during the differentiation of PC12 cells for 9 days with NGF. Neurofilament-L transcript was time-dependently increased. Both mRNA and protein levels of Tuj1 were increased after the induction, and the significant increase in NeuN was observed at day 9. Similar to the expression patterns of neuronal markers, BIP/GRP78 and CHOP mRNAs were highly increased at day 9, and ATF4 mRNA was also increased from day 7. These results strongly suggest the induction and possible role of ERSR in neuronal differentiation process. Further study to identify targets responsible for neuronal induction will be necessary.