• 제목/요약/키워드: XAI(eXplainable AI)

검색결과 15건 처리시간 0.024초

정보보호 분야의 XAI 기술 동향

  • 김홍비;이태진
    • 정보보호학회지
    • /
    • 제31권5호
    • /
    • pp.21-31
    • /
    • 2021
  • 컴퓨터 기술의 발전에 따라 ML(Machine Learning) 및 AI(Artificial Intelligence)의 도입이 활발히 진행되고 있으며, 정보보호 분야에서도 활용이 증가하고 있는 추세이다. 그러나 이러한 모델들은 black-box 특성을 가지고 있으므로 의사결정 과정을 이해하기 어렵다. 특히, 오탐지 리스크가 큰 정보보호 환경에서 이러한 문제점은 AI 기술을 널리 활용하는데 상당한 장애로 작용한다. 이를 해결하기 위해 XAI(eXplainable Artificial Intelligence) 방법론에 대한 연구가 주목받고 있다. XAI는 예측의 해석이 어려운 AI의 문제점을 보완하기 위해 등장한 방법으로 AI의 학습 과정을 투명하게 보여줄 수 있으며, 예측에 대한 신뢰성을 제공할 수 있다. 본 논문에서는 이러한 XAI 기술의 개념 및 필요성, XAI 방법론의 정보보호 분야 적용 사례에 설명한다. 또한, XAI 평가 방법을 제시하며, XAI 방법론을 보안 시스템에 적용한 경우의 결과도 논의한다. XAI 기술은 AI 판단에 대한 사람 중심의 해석정보를 제공하여, 한정된 인력에 많은 분석데이터를 처리해야 하는 보안담당자들의 분석 및 의사결정 시간을 줄이는데 기여할 수 있을 것으로 예상된다.

XAI(eXplainable Artificial Intelligence) 알고리즘 기반 사출 공정 수율 개선 방법론 (Injection Process Yield Improvement Methodology Based on eXplainable Artificial Intelligence (XAI) Algorithm)

  • 홍지수;홍용민;오승용;강태호;이현정;강성우
    • 품질경영학회지
    • /
    • 제51권1호
    • /
    • pp.55-65
    • /
    • 2023
  • Purpose: The purpose of this study is to propose an optimization process to improve product yield in the process using process data. Recently, research for low-cost and high-efficiency production in the manufacturing process using machine learning or deep learning has continued. Therefore, this study derives major variables that affect product defects in the manufacturing process using eXplainable Artificial Intelligence(XAI) method. After that, the optimal range of the variables is presented to propose a methodology for improving product yield. Methods: This study is conducted using the injection molding machine AI dataset released on the Korea AI Manufacturing Platform(KAMP) organized by KAIST. Using the XAI-based SHAP method, major variables affecting product defects are extracted from each process data. XGBoost and LightGBM were used as learning algorithms, 5-6 variables are extracted as the main process variables for the injection process. Subsequently, the optimal control range of each process variable is presented using the ICE method. Finally, the product yield improvement methodology of this study is proposed through a validation process using Test Data. Results: The results of this study are as follows. In the injection process data, it was confirmed that XGBoost had an improvement defect rate of 0.21% and LightGBM had an improvement defect rate of 0.29%, which were improved by 0.79%p and 0.71%p, respectively, compared to the existing defect rate of 1.00%. Conclusion: This study is a case study. A research methodology was proposed in the injection process, and it was confirmed that the product yield was improved through verification.

XAI에서 의사결정 나무 시각화의 심미도 평가 (Esthetic Evaluation of Decision tree Visualization in XAI)

  • 안철용;박지수;손진곤
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.1122-1125
    • /
    • 2020
  • AI의 결과를 이해하기 위해서 XAI(eXplainable Artificial Intelligence)의 연구는 매우 중요하다. 세계적으로 XAI 개발 연구는 많이 진행되고 있지만 개발된 XAI를 평가하는 연구는 매우 적다. 본 논문은 사용성 측면에서 XAI를 평가하기 위해 AI 사용성 요소, 과학적 설명의 요소, 휴리스틱 평가 요소를 분류하고 의사결정 나무를 시각화여 심미도를 평가한다.

XAI기반 악성코드 그룹분류 결과 해석 연구 (Analysis of Malware Group Classification with eXplainable Artificial Intelligence)

  • 김도연;정아연;이태진
    • 정보보호학회논문지
    • /
    • 제31권4호
    • /
    • pp.559-571
    • /
    • 2021
  • 컴퓨터의 보급 증가와 더불어 일반 사용자들에 대한 공격자들의 악성코드 배포 횟수 또한 증가하였다. 악성코드를 탐지하기 위한 연구는 현재까지도 진행되고 있으며 최근에는 AI를 이용한 악성코드 탐지 및 분석 연구가 중점적으로 이뤄지고 있다. 하지만 AI 알고리즘은 어떠한 이유로 악성코드를 탐지하고 분류하는지 설명할 수 없다는 단점이 존재한다. 이런 AI의 한계를 극복하고 실용성을 갖도록 하기 위해 XAI 기법이 등장하였다. XAI를 사용하면 AI의 최종 결과에 대해 판단 근거를 제시할 수 있다. 본 논문에서는 XGBoost와 Random Forest를 이용하여 악성코드 그룹분류를 진행하였으며, SHAP을 통해 결과를 해석하였다. 두 분류모델 모두 약 99%의 높은 분류 정확도를 보였으며, XAI를 통해 도출된 상위 API feature와 악성코드 주요 API를 비교해보았을 때 일정 수준 이상의 해석 및 이해가 가능하였다. 향후, 이를 바탕으로 직접적인 AI 신뢰성 향상 연구를 진행할 예정이다.

A reliable intelligent diagnostic assistant for nuclear power plants using explainable artificial intelligence of GRU-AE, LightGBM and SHAP

  • Park, Ji Hun;Jo, Hye Seon;Lee, Sang Hyun;Oh, Sang Won;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • 제54권4호
    • /
    • pp.1271-1287
    • /
    • 2022
  • When abnormal operating conditions occur in nuclear power plants, operators must identify the occurrence cause and implement the necessary mitigation measures. Accordingly, the operator must rapidly and accurately analyze the symptom requirements of more than 200 abnormal scenarios from the trends of many variables to perform diagnostic tasks and implement mitigation actions rapidly. However, the probability of human error increases owing to the characteristics of the diagnostic tasks performed by the operator. Researches regarding diagnostic tasks based on Artificial Intelligence (AI) have been conducted recently to reduce the likelihood of human errors; however, reliability issues due to the black box characteristics of AI have been pointed out. Hence, the application of eXplainable Artificial Intelligence (XAI), which can provide AI diagnostic evidence for operators, is considered. In conclusion, the XAI to solve the reliability problem of AI is included in the AI-based diagnostic algorithm. A reliable intelligent diagnostic assistant based on a merged diagnostic algorithm, in the form of an operator support system, is developed, and includes an interface to efficiently inform operators.

인공지능 스토리텔링(AI+ST) 학습 효과에 관한 사례연구 (A Case Study on the Effect of the Artificial Intelligence Storytelling(AI+ST) Learning Method)

  • 여현덕;강혜경
    • 정보교육학회논문지
    • /
    • 제24권5호
    • /
    • pp.495-509
    • /
    • 2020
  • 본 연구는 인공지능(이하 AI)이 모든 영역에 전일적으로 확산되는 시점을 맞아 비전공자들도 AI를 효과적으로 학습하는 방안을 탐색하기 위한 하나의 시론적 연구이다. AI 교육을 수학, 통계, 컴퓨터공학 전공 학생들뿐만 아니라 인문·사회과학 등 다른 전공자들도 쉽게 접근할 수 있도록 하기 위한 학습법을 탐색하고자 하였다. 마침 '설명 가능한 AI(XAI: eXplainable AI)'의 필요성과 MIT AI 연구소의 Patrick Winston의 '지각 있는 기계(AI)를 위한 스토리텔링의 중요성[33]'이 두드러진 상황에서 AI 스토리텔링 학습모델 연구의 의의를 찾을 수 있겠다. 이를 위해 본 연구는 우선 대구 소재 A 대학교의 학생들을 대상으로 그 가능성을 테스트하였다. 먼저 AI 스토리텔링(AI+ST) 학습법[30]의 교육목표, AI 교육내용의 체계와 학습방법론, 새로운 AI 도구의 소개 및 활용에 대해 살펴보고, 1) AI+ST 학습법이 알고리즘 중심의 학습법을 보완할 수 있는지, 2) AI+ST 학습법이 학생들에게도 효과가 있는지, 그리하여 AI 이해력, 흥미도, 응용력 배양에 도움이 되었는지에 관한 연구 질문을 중심으로 학습자들의 결과물을 비교 분석하였다.

MLOps를 위한 효율적인 AI 모델 드리프트 탐지방안 연구 (A Study on Efficient AI Model Drift Detection Methods for MLOps)

  • 이예은;이태진
    • 인터넷정보학회논문지
    • /
    • 제24권5호
    • /
    • pp.17-27
    • /
    • 2023
  • 오늘날 AI(Artificial Intelligence) 기술이 발전하면서 실용성이 증가함에 따라 실생활 속 다양한 응용 분야에서 널리 활용되고 있다. 이때 AI Model은 기본적으로 학습 데이터의 다양한 통계적 속성을 기반으로 학습된 후 시스템에 배포되지만, 급변하는 데이터의 상황 속 예상치 못한 데이터의 변화는 모델의 성능저하를 유발한다. 특히 보안 분야에서 끊임없이 생성되는 새로운 공격과 알려지지 않은 공격에 대응하기 위해서는 배포된 모델의 Drift Signal을 찾는 것이 중요해짐에 따라 모델 전체의 Lifecycle 관리 필요성이 점차 대두되고 있다. 일반적으로 모델의 정확도 및 오류율(Loss)의 성능변화를 통해 탐지할 수 있지만, 모델 예측 결과에 대한 실제 라벨이 필요한 점에서 사용 환경의 제약이 존재하며, 실제 드리프트가 발생한 지점의 탐지가 불확실한 단점이 있다. 그 이유는 모델의 오류율의 경우 다양한 외부 환경적 요인, 모델의 선택과 그에 따른 파라미터 설정, 그리고 새로운 입력데이터에 따라 크게 영향을 받기에 해당 값만을 기반으로 데이터의 실질적인 드리프트 발생 시점을 정밀하게 판단하는 것은 한계가 존재하게 된다. 따라서 본 논문에서는 XAI(eXplainable Artificial Intelligence) 기반 Anomaly 분석기법을 통해 실질적인 드리프트가 발생한 시점을 탐지하는 방안을 제안한다. DGA(Domain Generation Algorithm)를 탐지하는 분류모델을 대상으로 시험한 결과, 배포된 이후 데이터의 SHAP(Shapley Additive exPlanations) Value를 통해 Anomaly score를 추출하였고, 그 결과 효율적인 드리프트 시점탐지가 가능함을 확인하였다.

리조트 교차판매 예측모형 개발 및 SHAP을 이용한 해석 (Development of a Resort's Cross-selling Prediction Model and Its Interpretation using SHAP)

  • 강보람;안현철
    • 한국빅데이터학회지
    • /
    • 제7권2호
    • /
    • pp.195-204
    • /
    • 2022
  • 관광산업은 최근 코로나19 유행으로 인해 위기에 봉착해 있으며, 이를 극복하기 위해 무엇보다 수익성 개선이 매우 중요한 상황이다. 이 때 여행 수요 자체가 축소된 코로나19와 같은 상황에서는 수익 증대를 위해 객실 점유율을 높이기 위한 공격적인 영업전략보다 어려운 여건 속에서도 찾아온 고객에게 객실 외 추가상품을 판매하여 객단가를 높이는 방향이 더 효율적일 것이다. 국내 관광 연구 분야에서 머신러닝 기법은 수요예측을 중심으로 연구된 바 있으나 교차판매 예측에 대해서는 연구된 바가 거의 없다. 또한 넓은 의미로는 호텔과 같은 숙박업종 이지만 회원제 중심으로 운영하며 숙박과 취사에 적합한 시설을 갖추고 있는 리조트 업종에 특화된 연구는 더욱이 전무한 실정이다. 이에 본 연구에서는 실제 리조트 회사의 투숙 데이터로 다양한 머신러닝 기법을 활용하여 교차판매 예측 모형을 제안하고자 한다. 또한 설명가능한 인공지능(eXplainable AI) 기법을 적용해 교차판매에 영향을 미치는 요인이 무엇인지 해석하고 어떻게 영향을 미치는지 실증 분석을 통해 확인해 보고자 한다.

Optical Flow 기반의 Saccade 탐지를 통한 전정기관 이상 검출과 Dowhy 기반의 연관 관계의 신뢰도 검정 (Assurance of HIT (head impulse test, Saccade based Vestibular Anomaly Detection) using Confidence Interval of Optical Flow Comparison on Wasserstein Metric)

  • 지명진;김태현;김성환
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 춘계학술발표대회
    • /
    • pp.273-276
    • /
    • 2021
  • 최근의 기계 학습 (딥러닝)은 기존의 전통적인 통계 분석 방법들에 비해 효율성과 정확도가 높은 장점이 있지만, 처리과정이 블랙박스와 같아 결과 값의 중요한 원인 또는 근거 요인을 찾기 어렵다는 단점을 가지고 있다. 이를 해결하기 위한 최근의 XAI (eXplainable AI) 연구를 기반으로 하여, 본 논문에서는 의료기관에서 전정기관의 이상을 판별하기 위해 수작업으로 이루어지고 있는 HIT (head impulse test) 테스트 결과를 자동화하고, 설득력 있는 신뢰도 검정을 위해, XAI 기반 DoWhy 프레임 워크를 사용하였다. 전정기관 이상으로 의심되는 환자의 동공 움직임을 optical flow 로 추적하고, 정상인과의 Wasserstein metric 의 DoWhy 검증을 통해 전정기관 이상 여부의 신뢰도 구간을 검정한다.

XAI 기법을 이용한 전자상거래의 고객 구매 행동 이해 (Understanding Customer Purchasing Behavior in E-Commerce using Explainable Artificial Intelligence Techniques)

  • 이재준;정이태;임도현;곽기영;안현철
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.387-390
    • /
    • 2021
  • 최근 전자 상거래 시장이 급격한 성장을 이루면서 고객들의 급변하는 니즈를 파악하는 것이 기업들의 수익에 직결되는 요소로 인식되고 있다. 이에 기업들은 고객들의 니즈를 신속하고 정확하게 파악하기 위해, 기축적된 고객 관련 각종 데이터를 활용하려는 시도를 강화하고 있다. 기존 시도들은 주로 구매 행동 예측에 중점을 두었으나 고객 행동의 전후 과정을 해석하는데 있어 어려움이 존재했다. 본 연구에서는 고객이 구매한 상품을 확정 또는 환불하는 행동을 취할 때 해당 행동이 발생하는데 있어 어떤 요소들이 작용하였는지를 파악하고, 어떤 고객이 환불할 지를 예측하는 예측 모형을 새롭게 제시한다. 예측 모형 구현에는 트리 기반 앙상블 방법을 사용해 예측력을 높인 XGBoost 기법을 적용하였으며, 고객 의도에 영향을 미치는 요소들을 파악하기 위하여 대표적인 설명가능한 인공지능(XAI) 기법 중 하나인 SHAP 기법을 적용하였다. 이를 통해 특정 고객 행동에 대한 각 요인들의 전반적인 영향 뿐만 아니라, 각 개별 고객에 대해서도 어떤 요소가 환불결정에 영향을 미쳤는지 파악할 수 있었다. 이를 통해 기업은 고객 개개인의 의사 결정에 영향을 미치는 요소를 파악하여 개인화 마케팅에 사용할 수 있을 것으로 기대된다.

  • PDF