Non-Alkali multicomponent $La_2O_3-Al_2O_3-SiO_2$ glasses has been designed and analyzed on the basis of a mixture design experiment with constraints. Fitted models for thermal expansion coefficient, glass transition temperature, Young's modulus, Shear modulus and density are as follows: ${\alpha}(/^{\circ}C)=8.41{\times}10^{-8}x_1+5.72{\times}10^{-7}x_2+2.13{\times}10^{-7}x_3+1.09{\times}10^{-7}x_4+1.10{\times}10^{-7}x_5+1.15{\times}10^{-7}x_6+2.72{\times}10^{-8}x_7+2.41{\times}10^{-7}x_8-1.08{\times}10^{-8}x_1x_2+4.28{\times}10^{-8}x_3x_7-2.02{\times}10^{-8}x_3x_8-1.60{\times}10^{-8}x_4x_5-2.71{\times}10^{-9}x_4x_8-2.19{\times}10^{-8}x_5x_6-3.89{\times}10^{-8}x_5x_7$$T_g(^{\circ}C)=7.36x_1+15.35x_2+20.14x_3+8.97x_4+13.85x_5+4.22x_6+28.21x_7-1.44x_8-0.84x_2x_3-0.45x_2x_5-1.64x_2x_7+0.93x_3x_8-1.04x_5x_8-0.48x_6x_8$$E(GPa)=2.04x_1+14.26x_2-1.22x_3-0.80x_4-2.26x_5-1.67x_6-1.27x_7+3.63x_8-0.24x_1x_2-0.07x_2x_8+0.14x_3x_6-0.68x_3x_8+0.29x_4x_5+1.28x_5x_8$$G(GPa)=0.35x_1+1.78x_2+1.35x_3+1.87x_4+9.72x_5+29.16x_6-0.99x_7+3.60x_8-0.48x_1x_6-0.50x_2x_5+0.08x_3x_7-0.66x_3x_8+0.94x_5x_8$${\rho}(g/cm^3)=0.09x_1+0.51x_2-4.94{\times}10^{-3}x_3-0.03x_4+0.45x_5-0.07x_6-0.10x_7+0.07x_8-9.60{\times}10^{-3}x_1x_2-8.20{\times}10^{-3}x_1x_5+2.17{\times}10^{-3}x_3x_7-0.03x_3x_8+0.05x_5x_8$ The optimal glass composition similar to the thermal expansion coefficient of Si based on these fitted models is $65.53SiO_2{\cdot}25.00Al_2O_3{\cdot}5.00La_2O_3{\cdot}2.07ZrO_2{\cdot}0.70MgO{\cdot}1.70SrO$.
Journal of the Korean Crystal Growth and Crystal Technology
/
v.8
no.3
/
pp.478-486
/
1998
$CaTiO_3-x(La_{1/3}Nd_{1/3}TiO_3\;(0\le \textrm x\le0.8)$ system was prepared by reaction of $CaCO_3,\;LaO_3,\;Nd_2CO_3$ and ,TEX>$TiO_2$ mixture at 1673 K, which can be applied for microwave dielectric ceramic materials. The lattice parameters of(1-x))$CaTiO_3-x(La_{1/3}Nd_{1/3}TiO_3\;(0\le \textrm x\le0.8)$ system increased with the increase of x. Its structure was investigated by Rietveld profile-analysis of XRD in detail. Cations $ La^{3+}$ and Nd^{3+}$ were located at the $Ca^{2+}$ site in the range of $0\le \textrm x\le0.8$. crystal structure in $;(0\le \textrm x\le0.6)$ maintained space group Pnma with CaTiO_3 structure. The tiled and distorted $TiO_6$ was gradually released with the increase of x in $0\le \textrm x\le0.6$ .The structure was changed to a new space group of $Pmn2_1$ at the x value of 0.8. The relative dielectric constant $(\epsilon_r)$ of $(1-x)CaTiO_3-x(La_{1/3} Nd_{1/3})TiO_3$ ($(0\le \textrm x\le0.8)$) system was exponentially decreased by with the increased of x. The temperature coefficient of resonant frequency $(\tau_f)$ decreased with the increase of x in $0\le \textrm x\le0.6$ and then increased again at x=0.8 due to the change of crystal structure. The value of Q$\cdot f_o$ was 13800 (GHz) at x=0.2 and was very low under 2000 (GHz) in 0.4$\leq$x$\leq$0.8.
The magnetic properties of $Ni_{1-x}Zn_{x}Fe_{2}O_{4}$ have been studied by X-ray diffractometry and $M\"{o}ssbauer$ Spectroscopy at room temperature. The X-ray diffraction study show that spinel structure is formed in all x, lattice constants linearly increased from $8.3111{$\AA$}~8.4184{$\AA$}({\pm}0.0003)$ with increasing x from 0 to 1, and oxygen parameter increase with increasing x. $M\"{o}ssbauer$ spectrum shows that $Ni_{1-x}Zn_{x}Fe_{2}O_{4}(x=0)$ has two antiparallel magnetic structure due to $Fe^{3+}$ octahedral site and $Fe^{3+}$ tetrahedral site. $Ni_{1-x}Zn_{x}Fe_{2}O_{4}$ with $0.2{\leq}x{\leq}0.6$ has magnetic structure of Yafet and Kittel, in particularly, specimen with x=0.6 shows relaxation effect. Specimen with $x{\geq}0.8$ show paramagnetic quadrupole splitting. The isomer shift is independent of x, but quadrupole splittings decrease with increasing x in the range of $0.8{\leq}x{\leq}1$, and nuclear magnetic fields decrease with in¬creasing x in the range of $0{\leq}x{\leq}0.6$. The magnetic properties of $Ni_{1-x}Zn_{x}Fe_{2}O_{4}$ change from ferrimagnetics to pararnagnetics with increasing x.
본 장에서는 H.26L 비디오 코덱에 적용되는 움직임 보상 기법(motion compensation) 및 B 픽쳐(Bi-predictive picture) 에 대해 다루기로 한다. 먼저 H.26L 비디오 코덱이 H.263 또는 MPEG-4 Part 2와 같은 종래 비디오 코덱들과 움직임 보상 관점에서 다른 점을 살펴보면, 복수개의 레퍼런스 픽쳐(multiple reference picture) 로부터 움직임 추정 (motion estimation) 밀 움직임 보상을 수행하고, 16x16 매크로 블록 크기부터 16x8, 8x16, 8x8블록 크기에서 매크로 블록 모드 타입이 결정되고 8x8 모드는 다시 8x4, 4x8, 4x4 단위에서 서브 모드 타입이 결정된다. 따라서 한 개의 매크로블록은 최대 16개의 모션벡터를 깆을 수 있다. 또한 복수개의 레퍼런스 픽쳐와 다양한 블록 타입을 적용함에 따라 모션벡터 예측(PMV: prediction of motion vector) 은 현재 블록과 이웃하는 블록들 사이의 레퍼런스 픽쳐 인덱스 비교 및 현재 블록 타입이 16x8또는 8x16 일 때 방향성 예측을 허용하는 새로운 기법들이 소개되어 있다. 그리고 코딩 효율을 높이기 위한 방법으로서 1/4 pel 단위의 움직임 보상을 하여 블록의 예측 정확도를 높이도록 하고 있다. 한편, H.26L에서의 B 픽쳐는 종래 비디오 코덱에 비해 확장된 정의를 갖고 있다. 예를 들어, 종래의 비디오 코덱에서는 B 픽쳐가 시간 스케일러빌러티(temporal scalability)에 사용됨에 따라 레퍼런스 픽쳐로서 사용될 수 없지만, H.26L은 B 픽쳐가 레퍼런스 픽쳐로서 사용되는 것을 허용하고 있다. 또한 종래의 B 픽쳐가 양방향에서 움직임 보상을 한 것과 달리 H.26L은 동일 방향에 존재하는 두개의 레퍼런스 픽쳐에서도 움직임 보상을 허용한다.
The Transactions of the Korean Institute of Electrical Engineers C
/
v.53
no.9
/
pp.459-463
/
2004
In this study, the (l-x)$TiTe_3O_{8}$-x$MgTiO_3$ ceramics were investigated to obtain the improved dielectric properties of a high temperature stability and a sintering temperature of less than $900^{\circ}C$ which was necessary for the LTCC. According to the X-ray diffraction patterns of the (l-x)$TiTe_3O_{8}$-x$MgTiO_3$(x=0∼1) ceramics, the columbite structure of $TiTe_3O_{8}$ and ilmenite structure of $MgTiO_3$ were coexisted. Increasing the $MgTiO_3$ mole ratio(x), the density and dielectric constant were decreased and temperature coefficient of resonant frequency was moved to the negative direction and the quality factor was increased. In the case of the 0.6$TiTe_3O_{8}$-0.4$MgTiO_3$ ceramics sintered at $830^{\circ}C$ for 3hr., the microwave dielectric properties were $\varepsilon_{\gamma}$=29.3, Q${\times}$$f_{\gamma}$=39.600GHz and $\tau$$_{f}$=+9.3ppm/$^{\circ}C$.
Gd1-xSrxMnO3(0$\leq$X$\leq$0.6) as the cathode for solid oxide fuel cell was synthesized by citrate process and studied for its crystal structure, electrical conductivity, thermal expansion coefficient (TEC), and investigated reactivity with 8 mol% yttria stabilized zirconia(8YSZ) or Ce0.8Gd0.2O1.9 (CGO). The crystal structure of Gd1-xSrxMnO3 changed from orthorhombic (0$\leq$X$\leq$0.3) through cubic (0.4$\leq$X$\leq$0.5) to tetragonal structure (X=0.6). When Sr contents was increased, the electrical conductivity of Gd1-xSrxMnO3 was inthose of La1-xSrxMnO3, 8YSZ and CGO if Sr content was above 30mol%. TEC of Gd1-xSrxMnO3 was increased with Sr content. After heat treatment at 1300$^{\circ}C$ for 48 hours, reaction product of Gd1-xSrxMnO3 and 8YSZ was SrZrO3. However CGO had no reaction product with Gd1-xSrxMnO3.
Mechanical milling technique is considered to be a useful way of processing the fine Nd-Fe-B-type powder with high coercivity. In the present study, phase evolution of the $Nd_{15}(Fe_{1-x}Co_{x})_{77}B_{8}$ (x=0-0.6) alloys during the high energy mechanical milling and annealing was investigated. The effect of Co-substitution on the crystallization of the mechanically milled $Nd_{15}(Fe_{1-x}Co_{x})_{77}B_{8}$ amorphous material was examined. The Nd-Fe-B-type alloys can be amorphized completely by a high-energy mechanical milling. On annealing of the amorphous material, fine $\alpha$-Fe crystallites form first from the amorphous. These fine $\alpha$-Fe crystallites reacts with the remaining amorphous afterwards, leading to crystallization to $Nd_2Fe_{14}$B phase. The Co-substitution for Fe in $Nd_{15}(Fe_{1-x}Co_{x})_{77}B_{8}$ ($\mu$x=0∼0.6) alloys lower significantly the crystallization temperature of the amorphous phase to the $Nd_2Fe_{14}$B phase. The mechanically milled and annealed $Nd_{15}Fe_{77}B_8$ alloy without Co-substitution exhibits consistently better magnetic properties with respect to the alloys with Co-substitution.
Let Q(n,1) be the set of even unimodular positive definite integral quadratic forms in n-variables. Then n is divisible by 8. For A[X] in Q(n,1), the theta series $\theta$(sub)A(z) = ∑(sub)X∈Z(sup)n e(sup)$\pi$izA[X] (Z∈h (※Equations, See Full-text) the complex upper half plane) is a modular form of weight n/2 for the congruence group Γ$_1$(8) = {$\delta$∈SL$_2$(Z)│$\delta$≡()mod 8} (※Equation, See Full-text). If n$\geq$24 and A[X], B{X} are tow quadratic forms in Q(n,1), the quotient $\theta$(sub)A(z)/$\theta$(sub)B(z) is a modular function for Γ$_1$(8). Since we identify the field of modular functions for Γ$_1$(8) with the function field K(X$_1$(8)) of the modular curve X$_1$(8) = Γ$_1$(8)\h(sup)* (h(sup)* the extended plane of h) with genus 0, we can express it as a rational function of j(sub) 1,8 over C which is a field generator of K(X$_1$(8)) and defined by j(sub)1,8(z) = $\theta$$_3$(2z)/$\theta$$_3$(4z). Here, $\theta$$_3$ is the classical Jacobi theta series.
The magnetic thin films can be prepared without vacuum process and under the low temperature(<100 $^{\circ}C$) by ferrite plating. We have performed ferrite plating of $Ni_xFe_{3-x}O_4$ (x=0.162~0.138) films on cover glass at the substrate temperature 80 $^{\circ}C$ and pH range of the oxidizing solution, 7.1~8.8. the crystal structure of the samples has been identified as a single phase of polycrystal spinel structure by x-ray diffraction technique. The deposition rate and the grain size of the film increased with the pH of oxidizing solution. The coercive force (H_C)$ decreased with the pH of oxidizing solution.
Batch ion exchange experiments of Au(III) were performed from ammonium chloride solution by employing strong anionic exchange resins (Amberlite IRA 402 and AG 1-X8). Au(III) was well loaded into the two resins and the loading behavior of Au(III) into AG 1-X8 was superior to that into Amberlite IRA 402. The loading of Au(III) into AG 1-X8 followed Langmuir adsorption isotherm and the experimentally determined loading capacity was 355 mg/g. Au(III) was successfully eluted by $HClO_4$ from the loaded AG 1-X8 and the elution percentage of Au(III) increased with the concentration of $HClO_4$.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.