• 제목/요약/키워드: X-ray unit

검색결과 563건 처리시간 0.027초

Odyssey: a new GPU-based ray-tracing code for the Kerr Spacetime

  • Pu, Hung-Yi;Yun, Kiyun;Yoon, Suk-Jin
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.86.2-86.2
    • /
    • 2014
  • We present a new ray-tracing code, "Odyssey", for the Kerr spacetime accelerated by the Graphics Processing Unit (GPU). Taking advantage of the ability of nVidia graphic cards to evaluate trajectories of a large amount of photon simultaneously, the code is two orders of magnitude as fast as the previous CPU-based code corresponding to the speed of few nanoseconds per photon per time step. In the light of the Graphic User Interface (GUI) powered by the GPU-enhanced 2D/3D displaying technique, DirectX, it is feasible for users to manipulate diverse results such as rotating and zooming in/out the trajectories of photon instantly near the black hole. Thus the Odyssey can serve as a tool not only for scientific but also for the educational purpose. We discuss possible applications in detail in light of several results such as the shape of the silhouette of a black hole, the shape of a hot spot orbiting a black hole, and 3D photon trajectories.

  • PDF

Synthesis of Tellurium Sorption Complexes in Fully Dehydrated and Fully Ca2+-exchanged Zeolites A and X and their Single-crystal Structures

  • Lim, Woo-Taik;Park, Jong-Sam;Lee, Sang-Hoon;Jung, Ki-Jin;Heo, Nam-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권6호
    • /
    • pp.1274-1284
    • /
    • 2009
  • Single crystals of fully dehydrated and fully $Ca^{2+}$-exchanged zeolites A (|$Ca_6$|[$Si_{12}Al_{12}O_{48}$]-LTA) and X (|$Ca_{46}$| [$Si_{100}Al_{92}O_{384}$]-FAU) were brought into contact with Te in fine pyrex capillaries at 623 K and 673 K, respectively, for 5 days. Crystal structures of Te-sorbed $Ca^{2+}$-exchanged zeolites A and X have been determined by single-crystal X-ray diffraction techniques at 294 K in the cubic space group Pm$\overline{3}$ m (a = 12.288(2) $\AA$) and Fd $\overline{3}$ (a = 25.012(1) $\AA$), respectively. The crystal structures of pale red-brown |$Ca_6Te_3$|[$Si_{12}Al_{12}O_{48}$]-LTA and black coloured |$Ca_{46}Te_8$| [$Si_{100}Al_{92}O_{384}$]-FAU have been refined to the final error indices of $R_1/wR_2\;=\;0.1096/0.2768\;and\;R_1/wR_2$ = 0.1054/ 0.2979 with 204 and 282 reflections for which $F_o\;>\;4{\sigma}(F_o)$, respectively. In the structure of |Ca6Te3|[$Si_{12}Al_{12}O_{48}$]- LTA, 6 $Ca^{2+}$ ions per unit cell were found at one crystallographic positions, on 3-fold axes equipoints of opposite 6-rings. In |$Ca_{46}Te_8$|[$Si_{100}Al_{92}O_{384}$]-FAU, 46 $Ca^{2+}$ ions per unit cell were found at four crystallographically distinct positions: 3 $Ca^{2+}$ ions at Ca(1) fill the 16 equivalent positions of site I, 21 $Ca^{2+}$ ions at Ca(2) fill the 32 equivalent positions of site I’, 10 and 12 $Ca^{2+}$ ions at Ca(3) and Ca(4), respectively, fill the 32 equivalent positions of site II. The Te clusters are stabilized by interaction with cations and framework oxygen. In sodalite units, Te-Te distances of 2.86(10) and 2.69(4) $\AA$ in zeolites A and X, respectively exhibited strong covalent properties due to their interaction with $Ca^{2+}$ ions. On the other hand, in large cavity and supercage, those of 2.99(3) and 2.76(11) $\AA$ in zeolites A and X, respectively, showed ionic properties because alternative ionic interaction was formed through framework oxygen at one end and $Ca^{2+}$ cations at the other end.

인체 각 부위의 PET/MRI와 PET/CT의 SUV 변화 (Comparison of SUV for PET/MRI and PET/CT)

  • 김재일;전재환;김인수;이홍재;김진의
    • 핵의학기술
    • /
    • 제17권2호
    • /
    • pp.10-14
    • /
    • 2013
  • Purpose: Due to developed simultaneous PET/MRI, it has become possible to obtain more anatomical image information better than conventional PET/CT. By the way, in the PET/CT, the linear absorption coefficient is measured by X-ray directly. However in case of PET/MRI, the value is not measured from MRI images directly, but is calculated by dividing as 4 segmentation ${\mu}-map$. Therefore, in this paper, we will evaluate the SUV's difference of attenuation correction PET images from PET/MRI and PET/CT. Materials and Methods: Biograph mCT40 (Siemens, Germany), Biograph mMR were used as a PET/CT, PET/MRI scanner. For a phantom study, we used a solid type $^{68}Ge$ source, and a liquid type $^{18}F$ uniformity phantom. By using VIBE-DIXON sequence of PET/MRI, human anatomical structure was divided into air-lung-fat-soft tissue for attenuation correction coefficient. In case of PET/CT, the hounsfield unit of CT was used. By setting the ROI at five places of each PET phantom images that is corrected attenuation, the maximum SUV was measured, evaluated %diff about PET/CT vs. PET/MRI. In clinical study, the 18 patients who underwent simultaneous PET/CT and PET/MRI was selected and set the ROI at background, lung, liver, brain, muscle, fat, bone from the each attenuation correction PET images, and then evaluated, compared by measuring the maximum SUV. Results: For solid $^{68}Ge$ source, SUV from PET/MRI is measured lower 88.55% compared to PET/CT. In case of liquid $^{18}F$ uniform phantom, SUV of PET/MRI as compared to PET/CT is measured low 70.17%. If the clinical study, the background SUV of PET/MRI is same with PET/CT's and the one of lung was higher 2.51%. However, it is measured lower about 32.50, 40.35, 23.92, 13.92, 5.00% at liver, brain, muscle, fat, femoral head. Conclusion: In the case of a CT image, because there is a linear relationship between 511 keV ${\gamma}-ray$ and linear absorption coefficient of X-ray, it is possible to correct directly the attenuation of 511 keV ${\gamma}-ray$ by creating a ${\mu}$map from the CT image. However, in the case of the MRI, because the MRI signal has no relationship at all with linear absorption coefficient of ${\gamma}-ray$, the anatomical structure of the human body is divided into four segmentations to correct the attenuation of ${\gamma}-rays$. Even a number of protons in a bone is too low to make MRI signal and to localize segmentation of ${\mu}-map$. Therefore, to develope a proper sequence for measuring more accurate attenuation coefficient is indeed necessary in the future PET/MRI.

  • PDF

Synthesis and Characterization of the Large Single Crystal of Fully K+-exchanged Zeolite X (FAU), |K80|[Si112Al80O384]-FAU (Si/Al=1.41)

  • Lim, Woo-Taik;Jeong, Gyo-Cheol;Park, Chang-Kun;Park, Jong-Sam;Kim, Young-Hun
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권1호
    • /
    • pp.41-48
    • /
    • 2007
  • Large colorless single crystals of sodium zeolite X, stoichiometry |Na80 |[Si112Al80O384]-FAU, with diameters up to 200 μm and Si/Al = 1.41 have been synthesized from gels with the composition of 2.40SiO2 : 2.00NaAlO2 : 7.52NaOH : 454H2O : 5.00TEA. One of these, a colorless octahedron about 200 μm in cross-section has been treated with aqueous 0.1 M KNO3 for the preparation of K+-exchanged zeolite X. The crystal structure of |K80|[Si112Al80O384]-FAU per unit cell, a = 24.838(4) A, dehydrated at 673 K and 1 × 10-6 Torr, has been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd at 294 K. The structure was refined using all intensities to the final error indices (using only the 707 reflections for which Fo > 4σ (Fo)) R1 = 0.075 (based on F) and R2 = 0.236 (based on F2). About 80 K+ ions per unit cell are found at an unusually large number of crystallographically distinct positions, eight. Eleven K+ ions are at the centers of double 6-rings (D6Rs, site I; K-O = 2.492(6) A and O-K-O (octahedral) = 88.45(22)o and 91.55(22)o). Site-I' position (in the sodalite cavities opposite D6Rs) is occupied by five K+ ions per unit cell; these K+ ions are recessed 1.92 A into the sodalite cavities from their 3-oxygen planes (K-O = 2.820(19) A, and O-K-O = 78.6(6)o). Twety-three K+ ions are found at three nonequivalent site II (in the supercage) with occupancies of 5, 9, and 9 ions; these K+ ions are recessed 0.43 A, 0.75 A, and 1.55 A, respectively, into the supercage from the three oxygens to which it is bound (K-O = 2.36(13) A, 2.45(13) A, and 2.710(13) A, O-K-O = 116.5(20)o, 110.1(17)o, and 90.4(6)o, respectively). The remaining sixteen, thirteen, and twelve K+ ions occupy three sites III' near triple 4-rings in the supercage (K-O = 2.64(3) A, 2.94(3) A, 2.73(5) A, 2.96(6) A, 3.06(4) A, and 3.08(3) A).

Two Crystal Structures of Dehydrated Ag$^+$ and K$^+$Exchanged Zeolite A, $Ag_{12-x}K_x$-A, x = 1.3 and 2.7

  • Kim, Yang;Song, Seong-Hwan;Park, Jong-Yul;Kim, Un-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • 제9권6호
    • /
    • pp.338-341
    • /
    • 1988
  • Two crystal structures of fully dehydrated silver and potassium exchanged zeolite A, stoichiometries of $Ag_{9.3}K_{{2.7}^-}A$ (${\alpha}$ = 12.282(2) ${\AA}$) and $Ag_{10.7}K_{{1.3}^-}{\AA}$ (${\alpha}$ = 12.287(2) A) per unit cell, have been determined from 3-dimensional x-ray diffraction data gathered by counter methods. All structures were solved and refined in the cubic space group Pm3m at 21(1)$^{\circ}C$ . The crystals of $Ag_{9.3}K_{{2.7}^-}A$ and $Ag_{10.7}K_{{1.3}^-}A$ were prepared by flow method using exchange solutions in which mole ratios of $AgNO_3$ and $KNO_3$ were 1:10 and 1:5, respectively, with total concentration of 0.05M. The structures of the dehydrated $Ag_{9.3}K_{{2.7}^-}A$ and $Ag_{10.7}K_{{1.3}^-}A$ were refined to yield the final error indices $R_1$ = 0.037 and $R_2$ = 0.040 with 321 reflections, and $R_1$ = 0.042 and $R_2$ = 0.043 with 371 reflections, repectively, for which I > 3${\sigma}$(I). In both structures, eight $Ag^+$ ions are found nearly at 6-ring centers and each $Ag^+$ ion is nearly in the (1 1 1) plane at its O(3) ligands. The 8-ring sites are preferentially occupied by $K^+$ ions in both structures. 1.3 and 1.7 reduced silver atoms per unit cell were found inside of sodalite units of $Ag_{9.3}K_{{2.7}^-}A$ and that of $Ag_{10.7}K_{{1.3}^-}A$, respectively. These reduced silver species were presumably formed from the reduction of $Ag^+$ ions by oxide ions of residual water molecule or of the zeolite framework. These two crystals may be presented as hexasilver cluster in 21.7% and 28.3% of sodalite unit cells for $Ag_{9.3}K_{{2.7}^-}A$ and $Ag_{10.7}K_{{1.3}^-}A$, repectively.

Zinc Vacancy Ordering in BaTEX>$(Zn_1/3Ta2/3)O_3$Ceramics

  • Park, Seong-Jin;Sahn Nahm;Kim, Myong-Ho;Byun, Jae-Dong
    • The Korean Journal of Ceramics
    • /
    • 제2권4호
    • /
    • pp.242-245
    • /
    • 1996
  • The microstructure of $Ba (Zn_{1/3}Ta_{2/3})O_3$ (BZT) was investigated using X-ray diffractometry(XRD) and transmission electron microscopy (TEM). $Ba_{0.5}TaO_3$ and $Ba_3TaO_{5.5}$ (BT) phasses were observed on the surface of the sintered specimen by XRD. Furthermore, a new type of ordering along the [110] direction was found in sintered specimen by the XRD and TEM analysis. The wavelength of ordering was 0.9 nm which is three times larger than the interplanar distance of (110) plane and new type of ordering is considered to be a result of Zn vacancy ordering. The creation of Zn vacancies and formation of BT phases are attributed to the evaporation of volatile ZnO. A new mechanism for ZnO loss is suggested. In this mechanism, only Zn vacancies are created only when the amount of ZnO loss is small and as the amount of ZnO loss increases, BT phases are formed at the same time. A new unit cell of ordered structure is suggested as the superlattics containing three BZT unit cells.

  • PDF

Crystallization and Preliminary X-Ray Diffraction Analysis of 5,10-Methylenetetrahydrofolate Dehydrogenase/Cyclohydrolase from Thermoplasma acidophilum DSM 1728

  • Kim, Jae-Hee;Sung, Min-Woo;Lee, Eun-Hye;Nam, Ki-Hyun;Hwang, Kwang-Yeon
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권2호
    • /
    • pp.283-286
    • /
    • 2008
  • The methylenetetrahydrofolate dehydrogenase/cyclohydrolase (MTHFDC) from the thermoacidophilic archaeon Thermoplasma acidophilum is a 30.6kDa molecular-mass enzyme that sequentially catalyzes the conversion of formyltetrahydrofollate to methylenetetrahydrofolate, with a preference for NADP as a cofactor, rather than NAD. In order to elucidate the functional and structural features of MTHFDC from archaeons at a molecular level, it was overexpressed in Escherichia coli and crystallized in the presence of its cofactor, NADP, at 295K using polyethylene glycol (PEG) 4000 as a precipitant. The crystal is a member of the monoclinic space group $P2_1$, with the following unit cell parameters: $a=66.333{\AA},\;b=52.868{\AA},\;c=86.099{\AA},\;and\;{\beta}=97.570^{\circ}$, and diffracts to a resolution of at least $2.40{\AA}$ at the synchrotron. Assuming a dimer in the crystallographic asymmetric unit, the calculated Matthews parameter $(V_M)\;was\;2.44{\AA}^3/Da$ and the solvent content was 49.7%.

A Thermostable Xylose Isomerase from Thermus thermophilus: Biochemical Characterization, Crystallization, and Preliminary X-ray Analyses

  • Chang, Changsoo;Park, Byung-Chul;Lee, Dae-Sil;Suh, Se-Won
    • BMB Reports
    • /
    • 제31권6호
    • /
    • pp.600-603
    • /
    • 1998
  • A highly thermostable xylose isomerase from Thermus thermophilus has been expressed in Escherichia coli and crystallized. The purified enzyme shows its optimum temperature at $90^{\circ}C$. It has been crystallized at room temperature using polyethylene glycol 4000 as the precipitant. The crystal belongs to the orthorhombic space group $P2_12_12_1$, with unit cell parameters of a = 73.34 ${\AA}$, b = 144.05 ${\AA}$, c = 155.07 ${\AA}$. The presence of one molecule of tetrameric xylose isomerase in the asymmetric unit gives a crystal volume per protein mass ($V_m$) of 2.32 ${\AA}^3/Da$ and the solvent content of 47.0% by volume. The diffraction pattern extends to 1.9 ${\AA}$ Bragg spacing with synchrotron radiation and a set of native data has been collected to 2.3 ${\AA}$.

  • PDF

Overexpression, Purification, and Preliminary X-Ray Crystallographic Studies of Methionine Sulfoxide Reductase B from Bacillus subtilis

  • Park, Ae-Kyung;Shin, Youn-Jae;Moon, Jin-Ho;Kim, Young-Kwan;Hwang, Kwang-Yeon;Chi, Young-Min
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권1호
    • /
    • pp.59-62
    • /
    • 2008
  • The peptide methionine sulfoxide reductases (Msrs) are enzymes that catalyze the reduction of methionine sulfoxide back to methionine. Because of two enantiomers of methionine sulfoxide (S and R forms), this reduction reaction is carried out by two structurally unrelated classes of enzymes, MsrA (E.C. 1.8.4.11) and MsrB (E.C. 1.8.4.12). Whereas MsrA has been well characterized structurally and functionally, little information on MsrB is available. The recombinant MsrB from Bacillus subtilis has been purified and crystallized by the hanging-drop vapor-diffusion method, and the functional and structural features of MsrB have been elucidated. The crystals belong to the trigonal space group P3, with unit-cell parameters a=b=136.096, $c=61.918{\AA}$, and diffracted to $2.5{\AA}$ resolution using a synchrotron-radiation source at Pohang Light Source. The asymmetric unit contains six subunits of MsrB with a crystal volume per protein mass $(V_M)\;of\;3.37{\AA}^3\;Da^{-1}$ and a solvent content of 63.5%.

Formic Acid Oxidation on Bi-modified Pt Nanoparticles of Various Sizes

  • Jung, Chang-Hoon;Zhang, Ting;Kim, Byung-Jun;Kim, Jan-Dee;Rhee, Choong-Kyun;Lim, Tae-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권6호
    • /
    • pp.1543-1550
    • /
    • 2010
  • This work presents oxidation of formic acid on Bi-modified Pt nanoparticles of various sizes. The sizes of the studied Pt nanoparticles range from 1.5 to 5.6 nm (detailed in Rhee, C. K.; Kim, B.-J.; Ham, C.; Kim, Y.-J.; Song, K.; Kwon, K. Langmuir 2009, 25, 7140-7147), and the surfaces of the Pt nanoparticles are modified with irreversibly adsorbed Bi. The investigated coverages of Bi on the Pt nanoparticles are 0.12 and 0.25 as determined by coulometry of the oxidation of adsorbed hydrogen and Bi, and X-ray photoelectron spectroscopy. The cyclic voltammetric behavior of formic acid oxidation reveals that the adsorbed Bi enhances the catalytic activity of Pt nanoparticles by impeding a poison-forming dehydration path with a concomitant promotion of a dehydrogenation path. The chronoamperometric results indicate that elemental Bi and partially oxidized Bi are responsible for the catalytic enhancement, when the Bi coverages on Pt nanoparticles are 0.12 and 0.25, respectively. The size effect of Bi-modified Pt nanoparticles in formic acid oxidation is discussed in terms of specific activity (current per unit surface area) and mass activity (current per unit mass).