• 제목/요약/키워드: X-ray microscopy

검색결과 3,214건 처리시간 0.035초

하이브리드 시스템을 이용한 $CrMoC_xN_{1-x}$ 박막의 제조와 기계적 물성의 변화 (SYNTHESIS AND MECHANICAL PROPERTIES OF $CrMoC_xN_{1-x}$ COATINGS DEPOSITED BY HYBRID COATING SYSTE)

  • 윤준서;김광호
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2008년도 추계학술대회 초록집
    • /
    • pp.81-82
    • /
    • 2008
  • 하이브리드 코팅 시스템을 이용하여 $CrMoC_xN_{1-x}$ 박막을 AISI D2와 실리콘 웨이퍼 모재 위에 증착하였다. 박막 내 탄소 함량은 $CH_4/(CH_4+N_2)$ 가스 유량 증가에 비례하여 증가했다. 탄소 함량이 0.33일 때 44GPa의 최대강도 및 -4.4GPa의 잔류응력을 나타내었다. CrMoN 박막의 평균 마찰계수는 0.42이지만, 탄소함량을 증가함에 따라 0.31까지 감소 하였다. 이것은 박막 표면과 스틸볼 사이에서 탄소가 풍부한 층이 형성되어 일종의 고체윤활제 역할을 했기때문이다. 박막의 미세조직은 X-ray diffraction, Scanning electron microscopy, 그리고 X-ray photoelectron spectroscopy를 이용하여 분석하였다.

  • PDF

Fabrication of Single Crystal Poly (3,4-ethylenedioxythiophene) Nanowire Arrays by Vapor Phase Polymerization with Liquid-bridge-mediated Nanotransfer Molding

  • 이기석;조보람;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.372-372
    • /
    • 2012
  • We have studied a fabrication of Poly (3,4-ethylenedioxythiophene) (PEDOT) wire arrays and structures with various feature sizes from hundreds micrometers to tens nanometers. PEDOT is well-known as a conducting material, can be grown by a vapor pressure polymerization (VPP) method. The VPP technique is a bottom-up processing method that utilizes the organic arrangement of macromolecules to easily produce ordered aggregates. Also, liquid-bridge-mediated nanotransfer molding (LB-nTM), which was reported as a new direct patterning method recently, is based on the direct transfer of various materials from a mould to a substrate through a liquid bridge between them. The PEDOT nanowires grown by VPP method and transferred on a substrate to use LB-nTM method have been investigated by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED), X-Ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), and electrical properties.

  • PDF

Green Synthesis of Silver and Gold Nanoparticles Using Lonicera Japonica Flower Extract

  • Nagajyothi, P.C.;Lee, Seong-Eon;An, Minh;Lee, Kap-Duk
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권8호
    • /
    • pp.2609-2612
    • /
    • 2012
  • A simple green method was developed for rapid synthesis of silver and gold nanoparticles (AgNPs and AuNPs) has been reported using Lonicera japonica flower extract as a reducing and a capping agent. AgNPs and AuNPs were carried out at $70^{\circ}C$. The successful formation of AgNPs and AuNPs have been confirmed by UV-Vis spectro photometer, fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy dispersive X-ray Analysis (EDAX), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). To our knowledge, this is the first report where Lonicera japonica flower was found to be a suitable plant source for the green synthesis of AgNPs and AuNPs.

A modified electrode by a facile green preparation of reduced graphene oxide utilizing olive leaves extract

  • Baioun, Abeer;Kellawi, Hassan;Falah, Ahamed
    • Carbon letters
    • /
    • 제24권
    • /
    • pp.47-54
    • /
    • 2017
  • Different phytochemicals obtained from various natural plant sources are used as reduction agents for preparing gold, copper, silver and platinum nanoparticles. In this work a green method of reducing graphene oxide (rGO) by an inexpensive, effective and scalable method using olive leaf aqueous extract as the reducing agent, was used to produce rGO. Both GO and rGO were prepared and investigated by ultraviolet and visible spectroscopy, Fourier-transform infrared, scanning electron microscopy, atomic force microscopy, thermogravimetric analysis, cyclic voltammetry, X-ray photoelectron spectra, electrochemical impedance spectroscopy and powder X-ray diffraction.

Investigation of Water Transport in Newly Developed Micro Porous Layers for Polymer Electrolyte Membrane Fuel Cells

  • Alrwashdeh, Saad S.;Markotter, Henning;Haussmann, Jan;Hilger, Andre;Klages, Merle;Muller, Bernd R.;Kupsch, Andreas;Riesemeier, Heinrich;Scholta, Joachim;Manke, Ingo
    • Applied Microscopy
    • /
    • 제47권3호
    • /
    • pp.101-104
    • /
    • 2017
  • In this investigation, synchrotron X-ray imaging was used to investigate the water distribution inside newly developed gas diffusion media in polymer electrolyte membrane fuel cells. In-situ radiography was used to reveal the relationship between the structure of the microporous layer (MPL) and the water flow in a newly developed MPL equipped with randomly arranged holes. A strong influence of these holes on the overall water transport was found. This contribution provides a brief overview to some of our recent activities on this research field.

Simple fabrication route for vertically-aligned CZTS nanorod arrays for photoelectrochemical application based on AAO template

  • 김지민;양우석;오윤정;문주호
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.402.2-402.2
    • /
    • 2016
  • In photoelectrochemical (PEC) water splitting, Cu2ZnSnS4 (CZTS) compound has attracted intense attention as a photocathode due to not only large optical absorption coefficient, but also earth-abundance of constituent elements and suitable band alignment. With rapid development of nanotechnology, one-dimensional nanostructures of CZTS have been investigated as a potential form to achieve high efficiency because the nanostructures are expected to be capable of capturing more light and enhancing charge separation and transport. Here, we report a well-controlled fabrication route for vertically-aligned CZTS nanorod arrays on anodic aluminium oxide (AAO) template via simple sol-gel process followed by deposition of ZnS or CdS buffer layers on the CZTS nanorod to enhance charge separation. The structure, morphology, composition, optical absorption, and PEC properties of the resulting CZTS nanorod samples were characterized using X-ray diffraction, Raman spectroscopy, transmission electron microscopy, energy dispersive X-ray spectrometry, scanning electron microscopy, and UV-vis spectroscopy.

  • PDF

Characterization of Ni Oxide Nanofibers by Electrospinning

  • 박주연;고성위;강용철
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.379.2-379.2
    • /
    • 2016
  • The Ni oxide/PVP nanofibers were synthesized by sol-gel and electrospinning technique. The obtained Ni oxide/PVP (polyvinylpyrrolidone) nanofibers were calcined to remove the PVP compound at 873 and 1173 K. The Ni oxide/PVP nanofibers were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The SEM images showed that the mat form was prepared by calcination of Ni oxide/PVP nanofibers at 873 K. And the crystal structure of Ni oxide at 1173 K was also confirmed by SEM images. XRD results shows the crystallinity of metallic Ni and NiO. TEM images also verified the crystal phase of Ni and Ni oxide. XP spectra revealed that the oxidation state of Ni to conclude the chemical composition of Cu oxide nanofibers.

  • PDF

$K_2O-SiO_2-TiO_2$ 계 유리의 결정화 (Crystallization of $K_2O-SiO_2-TiO_2$ Glasses)

  • 김성식;박현수
    • 한국세라믹학회지
    • /
    • 제22권2호
    • /
    • pp.44-50
    • /
    • 1985
  • The crystallization behavior of $K_2O-SiO_2$ glasses with added $TiO_2$ and the effect of $TiO_2$ on internal nuleation at temperature in the range of 875 to 121$0^{\circ}C$ have been investigated by means of X-ray diffractometry optical microscopy and scanning electron microscopy. The crystalline phase of these glasses identified by X-ray diffractometry is cristbalite. The scanning electron microspcopy reveals a two-phase layer of dendritic crystals and intersitial melt which grow from the surface at a constant rate, The observed crystallization rates are consistent with a diffusion-controlled mechanism. An equation relating viscosity and undercooling to growth rate is presented.

  • PDF

Size-Controlled Cu2O Nanocubes by Pulse Electrodeposition

  • Song, You-Jung;Han, Sang-Beom;Lee, Hyun-Hwi;Park, Kyung-Won
    • 전기화학회지
    • /
    • 제13권1호
    • /
    • pp.40-44
    • /
    • 2010
  • In this work, highly uniform size-controlled $Cu_2O$ nanocubes can be successfully formed by means of pulse electrodeposition. The size distribution, crystal structure, and chemical state of deposited $Cu_2O$ nanocubes are characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The phase transition from $Cu_2O$ to Cu can be controlled by constant current electrodeposition as a function of deposition time. In particular, the size of the $Cu_2O$ nanocubes can be controlled using pulse electrodeposition as a function of applied current density.