• Title/Summary/Keyword: X-ray microanalysis

Search Result 74, Processing Time 0.019 seconds

Comparative analysis of various corrosive environmental conditions for NiTi rotary files (니켈티타늄 파일의 부식에 영향을 미치는 다양한 환경 조건 비교)

  • Yum, Ji-Wan;Park, Jeong-Kil;Hur, Bock;Kim, Hyeon-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.4
    • /
    • pp.377-388
    • /
    • 2008
  • The aim of the present study is to compare the corrosion tendency using two kinds of NiTi files in the various environmental conditions through the visual examination and electrochemical analysis. ProTaper Universal S2, 21 mm (Dentsply Maillefer, Ballaigues, Switzerland) and Hero 642, 0.06 tapers, size 25, 21 mm (Micromega, Besancon, France) rotary instruments were tested. The instruments were randomly divided into eighteen groups (n = 5) by the immersion temperature, the type of solution, the brand of NiTi rotary instrument and the presence of mechanical loading. Each file was examined at various magnifications using Scanning Electron Microscope (JEOL, Akishima, Tokyo, Japan) equipped with energy dispersive X-ray microanalysis (EDX). EDX was used to determine the components of the endodontic file alloy in corroded and noncorroded areas. The corrosion resistance of unused and used NiTi files after repeated uses in the human teeth was evaluated electrochemically by potentiodynamic polarization test using a potentiostat (Applied Corrosion Monitoring, Cark-in-Cartmel, UK). Solution temperature and chloride ion concentration may affect on passivity of NiTi files. Under the conditions of this in vitro study, the corrosion resistance is slightly increased after clinical use.

The Effect of Au Addition on the Hardening Mechanism in Ag-25wt% Pd-15wt% Cu (Ag-25wt% Pd-15wt% Cu 3원합금(元合金) 및 Au 첨가합금(添加合金)의 시효경화특성(時效京華特性))

  • Bea, B.J.;Lee, H.S.;Lee, K.D.
    • Journal of Technologic Dentistry
    • /
    • v.20 no.1
    • /
    • pp.37-49
    • /
    • 1998
  • The specimens used were Ag-25 Pd-15 Cu ternary alloy and Au addition alloy. These alloys were melted and casted by induction electric furnace and centrifugal casting machine in Ar atmosphere. These specimens were solution treated for 2hr at $800^{\circ}C$ and were then quenched into iced water, and aged at $350{\sim}550^{\circ}C$ Age- hardening characteristics of the small Au-containing Ag-Pd-Cu dental alloys were investigated by means of hardness testing. X-ray diffraction and electron microscope observations, electrical resistance, ergy dispersed spectra and electron probe microanalysis. Principal results are as follows : Hardening occured in two stages, i.e., stage I in low temperature and stage II in high temperature regions, during continuous aging. The case of hardening in stage I was due to the formation of the $L1_0$ type face-centered tetragonal PdCu-ordered phase in the grain interior and hardening in stage I was affected by the Cu concentration. In stage II, decomposition of the ${\alpha}$ solid solution to a PdCu ordered phase($L1_0$ type) and an Ag-rich ${\alpha}2$ phase occurred and a discontinuous precipitation occurred at the grain boundary. From the electron microscope study, it was conclued that the cause of age-hardening in this alloy is the precipitation of the PdCu ordered phase, which has AuCu I type face-centered tetragonal structure. Precipetation procedure was ${\alpha}{\to}{\alpha}+{\alpha}_2+PdCu {\to}{\alpha}_1+{\alpha}_2+PdCu$ at Pd/Cu = 1.7 Ag-Pd-Cu alloy is more effective dental alloy as ageing treatment and is suitable to isothermal ageing at $450^{\circ}C$.

  • PDF

The Effect of Au Addition on the Hardening Mechanism in Ag-30wt%Pd-10wt%Cu Alloy (Ag-30wt% Pd-10wt% Cu 3원합금(元合金) 및 Au 첨가합금(添加合金)의 시효경화특성(時效硬化特性))

  • Lee, K.D.;Nam, S.Y.
    • Journal of Technologic Dentistry
    • /
    • v.21 no.1
    • /
    • pp.27-41
    • /
    • 1999
  • The Ag-Pd-Cu alloys containing a small amount of Au is commonly used for dental purposes, because this alloy cheaper than Au-base alloys for clinical use. However, the most important characteristic of this alloy is age-hardenability, which is not exhibited by other Ag-base dental alloys. The specimens used were Ag-30Pd-10Cu ternary alloy and Au addition alloy. These alloys were melted and casted by induction electric furnace and centrifugal casting machine in Ar atmosphere. These specimens were solution treated for 2hr at $800^{\circ}C$ and were then quenched into iced water, and aged at 350-$550^{\circ}C$ Age-hardening characteristic of the small Au-containing Ag-Pd-Cu dental alloys were investigated by means of hardness testing, X-ray diffraction and electron microscope observations, electrical resistance, differential scanning calorimetric, energy dispersed spectra and electron probe microanalysis. Principal results are as follows ; Maximum hardening occured in two co-phases of ${\alpha}_2$ + PdCu In stage II, decomposition of the $\alpha$ solid solution to a PdCu ordered phase($L1_o$ type) and an Ag-rich ${\alpha}_2$ phase occurred and a discontinuous precipitation occurred at the grain boundary. From the electron microscope study, it was concluded that the cause of age-hardening in this alloy is the precipitation of the PdCu redered phase, which has AuCu I type face-centered tetragonal structure. Precipitation procedure was ${\alpha}{\to}{\alpha}_1+PdCu{\to}{\alpha}_2+PdCu$ at Pd/Cu = 3 Pd element of Ag-Pd-Cu alloy is more effective dental alloy on anti-corrosion and is suitable to isothermal ageing at $450^{\circ}C$.

  • PDF

The Effect of Au Addition on the Hardening Mechanism in Ag-20wt% Pd-20wt% Cu (Ag-20wt% Pd-20wt% Cu 3원합금(元合金) 및 Au첨가합금(添加合金)의 시효경화특성(時效硬化特性))

  • Park, M.H.;Bae, B.J.;Lee, H.S.;Lee, K.D.
    • Journal of Technologic Dentistry
    • /
    • v.19 no.1
    • /
    • pp.21-35
    • /
    • 1997
  • The Ag-Pd-Cu alloys containing a small amount of Au is commonly used for dental purposes, because this alloy is cheaper than Au-base alloys for clinical use. However, the most important characteristic of this alloy is age-hardenability, which is not exhibited by other Ag-base dental alloys. The specimens used were Ag-20Pd-20Cu ternary alloy and Au addition alloy. These alloys were melted and casted by induction electic furace and centrifugal casting machine in Ar atmoshpere. These specimens were solution treated for 2hr at $800^{\circ}C$ and were then quenched into iced water, and aged at $350{\sim}550^{\circ}C$ Age-hardening characteristics of the small Au-containing Ag-pPd-Cu dental alloys were investigated by means of hardness testing, X-ray diffraction and electron microscope observations, electrical resistance, differential scanning calorimetric, emergy dispersed spectra and electron probe microanalysis. Principal results are as follows : Hardening occured in two stages, I. e., stage I in low temperature and stage II in high temperature regions, during continuous aging. The case of hardening in stage I was due to the formation of the Llo type face centered tetragonal PdCu-ordered phase in the grain interior and hardening in stage I was affedted by the Cu concentration. In stage II, decomposition of the $\alpha$ solid solution to a PdCu ordered phase(L1o type) and an Agrich ${\alpha}2$ phase occurred and a discontiunous precipitation occurred at the grain boundary. Form the electron microscope study, it was concluded that the cause of age-hardening in this alloy is the precipitation of the PdCu ordered phase, which has AuCu I type face-centered tetragonal structure. Precipitation procedure was ${\alpha}\to{\alpha}+{\alpha}2+PdCu\to{\alpha}1+{\alpha}2+PdCu$ at Pd/Cu = 1 Ag-Pd-Cu alloy is more effective dental alloy as ageing treatment and is suitable to isothermal ageing at $450^{\circ}C$.

  • PDF