• Title/Summary/Keyword: X-ray fluorescence analysis

Search Result 258, Processing Time 0.026 seconds

A Study of Neolithic era Plain Coarse Pottery of Cheju Island by Mossbauer Spectroscopy (제주도 신석기 토기에 대한 Mossbauer 연구)

  • 윤태건;최원준;고정대;홍성락
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.4
    • /
    • pp.183-190
    • /
    • 2000
  • This study aims at making a research into the physical and chemical properties of the neolithic era potterys, which are unearthed from Gosanli, Sagaeli, Bukchonli, Samyangdong and Gonaili districts in Cheju Island, by using X-ray diffraction, X-ray fluorescence spectrometer and Mossbauer spectroscopy. This results are as follows. The principal component of five plain coarse pottery sherds by X-ray fluorescence spectrometer and X-ray diffraction spectrum at the room temperature is silicate mineral which is equal to SiO$_2$, and they also have a little magetite, hematite and goethite. The most existent Fe is Fe$\^$+3/ through Mossbauer spectroscopy analysis of plain coarse pottery sherds and it is presumed that the magnetic hyperfine splitting caused this result. The ratio of Fe$\^$2+//(Fe$\^$2+/+Fe$\^$3+/) is mostly zero by Mossbauer spectrum at the room temperature of plain coarse pottery sherds and it is thought because they were fired in the atmosphere.

  • PDF

A Basic Study on the Refractory Material of Kalcheon Iron Making Furnace (갈천리 야철로 내화재료의 기초적 연구)

  • HAN, S. M.;KIM, K. N.;SHIN, D. Y.
    • Journal of Conservation Science
    • /
    • v.2 no.2 s.2
    • /
    • pp.25-30
    • /
    • 1993
  • Materials (refractory, stone) of iron making furnace excavated from Kalcheon were investigated by the scanning electron microscopy(SEM) with an energy dispersive X-ray analysis (EDAX), X-ray fluorescence(XRF), and X-ray diffraction(XRD). Chemical composition of the refractory materials were $SiO_2(68.74\%),\;Al_2O_3(18.40\%),\;CaO(0.42\%),\;MgO(1.04\%)\;and\;K_2O(2.26\%)$ in weight ratio, which were the typical components presented in common clay. The results of chemical analysis for the stone and the glaze coated, alkali ion(K, Na, Ca) components of the glaze contained high concentration than that the stone. It was suggested that this change had a close relationship with the kinds of fuels used.

  • PDF

Radiation attenuation and elemental composition of locally available ceramic tiles as potential radiation shielding materials for diagnostic X-ray rooms

  • Mohd Aizuddin Zakaria;Mohammad Khairul Azhar Abdul Razab;Mohd Zulfadli Adenan;Muhammad Zabidi Ahmad;Suffian Mohamad Tajudin;Damilola Oluwafemi Samson;Mohd Zahri Abdul Aziz
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.301-308
    • /
    • 2024
  • Ceramic materials are being explored as alternatives to toxic lead sheets for radiation shielding due to their favorable properties like durability, thermal stability, and aesthetic appeal. However, crafting effective ceramics for radiation shielding entails complex processes, raising production costs. To investigate local viability, this study evaluated Malaysian ceramic tiles for shielding in diagnostic X-ray rooms. Different ceramics in terms of density and thickness were selected from local manufacturers. Energy Dispersive X-ray Fluorescence (EDXRF) and X-ray Fluorescence (XRF) characterized ceramic compositions, while Monte Carlo Particle and Heavy Ion Transport code System (MC PHITS) simulations determined Linear Attenuation Coefficient (LAC), Half-value Layer (HVL), Mass Attenuation Coefficient (MAC), and Mean Free Path (MFP) within the 40-150 kV energy range. Comparative analysis between MC PHITS simulations and real setups was conducted. The C3-S9 ceramic sample, known for homogeneous full-color structure, showcased superior shielding attributes, attributed to its high density and iron content. Notably, energy levels considerably impacted radiation penetration. Overall, C3-S9 demonstrated strong shielding performance, underlining Malaysia's potential ceramic tile resources for X-ray room radiation shielding.

Quantitative Analysis of X-Ray Fluorescence for Understanding the Effect of Elevated Temperatures on Cement Pastes (XRF (X-ray fluorescence)를 활용한 고온환경에 노출된 시멘트 페이스트 분석의 이해)

  • Kil-Song Jeon;Young-Sun Heo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.130-137
    • /
    • 2023
  • By using XRF (X-ray fluorescence), this study investigates the variation of chemical properties in cement pastes at elevated temperatures. High-temperature conditions were prepared by using an electric furnace, planning a total of 11 target temperatures ranging from room temperature to 1000 ℃. A standard library of geo-quant basic was applied for the analysis of 12 elements in cement paste, including Ca, Si, Al, Fe, S, Mg, Ti, Sr, P, Mn, Zn and K. The results revealed that, as the temperature increased, the proportion of each element in the cement paste also increased. With the exception of a few elements present in extremely low amounts in the cement pastes, the variation in the composition ratio of most elements exhibited a strong correlation with temperature, with an R-squared value exceeding 0.98. In this study, cement pastes exposed to normal and high-temperature environments were compared. The authors established that the reasons for the different results in this comparison can be explained from the same perspective as when comparing raw cement with cement paste. Furthermore, this study discussed the potentially most dominant parameter when investigating the properties of cement paste using XRF.

Generalized Two-dimensional (2D) Correlation Spectroscopy: Principle and Its Applications (일반화된 이차원 상관 분광학: 원리 및 응용)

  • Young Mee Jung;Seung Bin Kim
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.5
    • /
    • pp.447-459
    • /
    • 2003
  • Generalized 2D correlation spectroscopy has been applied extensively to the analysis of spectral data sets obtained during the observation of a system under some external perturbation. It is used in various fields of spectroscopy including IR, Raman, UV, fluorescence, X-ray diffraction, and X-ray absorption spectroscopy (XAS) as well as chromatography. 2D hetero-spectral correlation analysis compares two completely different types of spectra obtained for a system under the same perturbation. Because of the wide range of applications of this technique, it has become one of the standard analytical techniques for the analytical chemistry, physical chemistry, biochemistry, and so on, and for studies of polymers, biomolecules, nanomaterials, etc. In this paper, we will introduce the principle of generalized 2D correlation spectroscopy and its applications that we have studied.

Preparation and Structure Properties of LaBa2Cu2O9, LaBa22CaCu3O12 and LaBa2Ca2Cu5O15 Perovskites

  • Kareem Ali Jasim;Hind Abdulmajeed Mahdi;Rafah Ismael Noori;Marwa Ayad Abdulmajeed
    • Korean Journal of Materials Research
    • /
    • v.33 no.9
    • /
    • pp.367-371
    • /
    • 2023
  • In this study we examine variations in the structure of perovskite compounds of LaBa2Cu2O9, LaBa22CaCu3O12 and LaBa2Ca2Cu5O15 synthesized using the solid state reaction method. The samples' compositions were assessed using X-ray fluorescence (XRF) analysis. The La: Ba: Ca: Cu ratios for samples LaBa2Cu2O9, LaBa22CaCu3O12 and LaBa2Ca2Cu5O15 were found by XRF analysis to be around 1:2:0:2, 1:2:1:3, and 1:2:2:5, respectively. The samples' well-known structures were then analyzed using X-ray diffraction. The three samples largely consist of phases 1202, 1213, and 1225, with a trace quantity of an unknown secondary phase, based on the intensities and locations of the diffraction peaks. According to the measured parameters a, b, and c, every sample has a tetragonal symmetry structure. Each sample's mass density was observed to alter as the lead oxide content rose. Scanning electron microscope (SEM) images of the three phases revealed that different Ca-O and Cu-O layers can cause different grain sizes, characterized by elongated thin grains, without a preferred orientation.

Studies on X-Ray Fluorescence Analysis of Sulfide Ores by Solution Technique (I). Analysis of Sulfur (용액법을 이용한 황화광석의 X-선 형광분석에 관한 연구 (제1보). 황의 분석)

  • Young-Sang Kim;Kee-Chae Park
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.229-234
    • /
    • 1982
  • Using solution technique, sulfur in the sulfide ore was indirectly determined by X-ray fluorescence spectrometry. The sample was dissolved with the mixed solution of B$r_2$ and HN$O_3$, and Si$O_2$, a major constituent, was repelled from the solution by HF treatment several times, B$a^{2+}$ solution was added to the solution to precipitate the S$O^4_{2-}$ ion as BaS$O_4$. Measuring the fluorescent X-ray intensity of excess Ba2+ ion in the filtrate, the content of sulfur in the original ore was back-calculated. Comparing the results by this method with the gravimetric method, the mean difference was ${\pm}1.7%$ in the range of 20 to 40% of sulfur content and the method was tolerably reproducible.

  • PDF

An Efficient Background Modeling and Correction Method for EDXRF Spectra (EDXRF 스펙트럼을 위한 효율적인 배경 모델링과 보정 방법)

  • Park, Dong Sun;Jagadeesan, Sukanya;Jin, Moonyong;Yoon, Sook
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.238-244
    • /
    • 2013
  • In energy dispersive X-ray fluorescence analysis, the removal of the continuum on which the X-ray spectrum is superimposed is one of the most important processes, since it has a strong influence on the analysis result. The existing methods which have been used for it usually require tight constraints or prior information on the continuum. In this paper, an efficient background correction method is proposed for Energy Dispersive X-ray fluorescence (EDXRF) spectra. The proposed method has two steps of background modeling and background correction. It is based on the basic concept which differentiates background areas from the peak areas in a spectrum and the SNIP algorithm, one of the popular methods for background removal, is used to enhance the performance. After detecting some points which belong to the background from a spectrum, its background is modeled by a curve fitting method based on them. And then the obtained background model is subtracted from the raw spectrum. The method has been shown to give better results than some of traditional methods, while working under relatively weak constraints or prior information.

The Result of the Pigment Analysis of the Mural in Ssangyeongchong (Tomb of Two Pillars) from Goguryeo (고구려(高句麗) 쌍영총(雙楹塚) 벽화(壁畫)의 안료분석(顔料分析))

  • Yu, Heisun
    • Conservation Science in Museum
    • /
    • v.6
    • /
    • pp.47-54
    • /
    • 2005
  • The elements of the pigments used on the wall painting in Ssangyeongchong (Tomb of Two Pillars) from Goguryeo in the Nampo area of Pyeongyang were analyzed to confirm their mineral compositions and features of the painting. Specifically, the non-destructive X-ray fluorescence spectrometer (XRF) was used. On the other hand, the mineral composition of the background and pigment layers were analyzed using an X-ray diffractometer (XRD). The results of these analyses suggested that the lips of the characters in the painting were painted with HgS, and their faces, painted with HgS(Cinnabar/ vermilion) mixed with CaCO3. Note that lead white pigment [2PbCO3·Pb(OH)2] was found only on the bottom layer of the painting, indicating that the wall painting was likely to have been created using the Secco method.

X-RAY FLUORESCENCE IN RESEARCH ON THE CULTURAL HERITAGE

  • Cechak, Tomas;Kopecka, Ivana;Musilek, Ladislav
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.321-326
    • /
    • 2001
  • Radionuclide X-ray fluorescence analysis is a method, which has many advantages for analysing various historic artefacts, as it is relatively cheap, sensitive and non-destructive, and it allows measurements in-situ. However, this analysis has also certain limitations especially concerning sensitivity to chemical elements only, irrespective of the compounds or chemical forms in which these elements have been bonded. In addition, light elements emitting very soft X-rays cannot be measured, and in order to detect a wide range of elements, it is necessary to carry out repeated measurements with different radiation sources. Despite these limitations, valuable information can be obtained about the composition of historic materials and data about the origin and age of these artefacts can be derived. Analyses of wall paintings, ancient metal sculptures or other objects of art provide the basis for historic considerations documented in our results for some objects belonging to the Czech cultural heritage. The results are promising. Thus it is expected that our laboratory will expand its work into more fields of the fine and applied arts.

  • PDF