DOI QR코드

DOI QR Code

Quantitative Analysis of X-Ray Fluorescence for Understanding the Effect of Elevated Temperatures on Cement Pastes

XRF (X-ray fluorescence)를 활용한 고온환경에 노출된 시멘트 페이스트 분석의 이해

  • 전길송 (한국건설기술연구원 화재안전연구소) ;
  • 허영선 (한국건설기술연구원 화재안전연구소)
  • Received : 2023.11.15
  • Accepted : 2023.12.01
  • Published : 2023.12.31

Abstract

By using XRF (X-ray fluorescence), this study investigates the variation of chemical properties in cement pastes at elevated temperatures. High-temperature conditions were prepared by using an electric furnace, planning a total of 11 target temperatures ranging from room temperature to 1000 ℃. A standard library of geo-quant basic was applied for the analysis of 12 elements in cement paste, including Ca, Si, Al, Fe, S, Mg, Ti, Sr, P, Mn, Zn and K. The results revealed that, as the temperature increased, the proportion of each element in the cement paste also increased. With the exception of a few elements present in extremely low amounts in the cement pastes, the variation in the composition ratio of most elements exhibited a strong correlation with temperature, with an R-squared value exceeding 0.98. In this study, cement pastes exposed to normal and high-temperature environments were compared. The authors established that the reasons for the different results in this comparison can be explained from the same perspective as when comparing raw cement with cement paste. Furthermore, this study discussed the potentially most dominant parameter when investigating the properties of cement paste using XRF.

본 연구는 XRF 장비를 활용하여 고온조건에 노출된 시멘트 페이스트의 화학적 특성변화에 대한 연구를 진행하였다. 고온조건은 전기가열로를 이용하여 상온에서 1000도까지 총 11개의 목표온도를 계획하여 진행하였고, Geo-quant basic 표준 라이브러리를 이용하여 Ca, Si, Al, Fe, S, Mg, Ti, Sr, P, Mn, Zn, K 등 12종의 원소를 분석 대상으로 하였다. 실험 결과 피해온도가 증가할수록 시멘트페이스트를 구성하고 있는 각 원소의 비율이 증가하는 것으로 나타났다. 극히 일부의 미량 원소를 제외하고, 대부분의 원소 구성비율은 피해온도와 높은 상관성을 나타냈는데, R-squared 값 0.98 이상을 나타내었다. 본 연구에서는 100% 정규화 기능을 사용하지 않고 XRF 장비를 이용하여 일반환경과 고온 환경에 노출된 시멘트페이스트를 비교 분석하였는데, 결과의 차이가 발생한 이유에 대해서 일반 시멘트 원재료와 시멘트페이스트를 비교하였을 때 차이가 발생한 이유와 동일한 측면에서 설명하였다. 또한, 이를 통해 XRF 장비를 활용하여 시멘트페이스트를 분석할 때 잠재적으로 가장 중요한 영향인자에 대해 논의하였다.

Keywords

Acknowledgement

본 연구는 한국건설기술연구원 주요사업 「친환경 Carbon Eating Concrete(CEC) 제조 및 활용 기술 개발」의 연구비 지원에 의해 수행되었습니다.

References

  1. Bentz, D. P. (1997), Three-dimensional computer simulation of Portland cement hydration and microstructure development, Journal of American Ceramic Society, 80(1), 3-21. https://doi.org/10.1111/j.1151-2916.1997.tb02785.x
  2. Cao, M., Li, L., Yin, H., and Ming, X. (2019), Microstructure and strength of calcium carbonate (CaCO3) whisker reinforced cement paste after exposed to high temperatures, Fire Technology, 55, 1983-2003. https://doi.org/10.1007/s10694-019-00839-3
  3. Crozier D. A., and Sanjayan, J. G. (1999), Chemical and physical degradation of concrete at elevated temperature, Concrete in Australia, 25, 18-20.
  4. Gao, D., Luo, C., Liu, Y., Dai, P., and Lu, J. (2021), An X-ray fluorescence (XRF) analysis of a molecular layer deposition (MLD) method used in producing cement from phosphogypsum, Spectroscopy, 36(7), 37-43.
  5. Han, C. G., Han, M. C., and Heo, Y. S. (2009), Improvement of Fig. 10 P residual compressive strength and spalling resistance of high-strength RC columns subjected to fire, Construction and Building Materials, 23(1), 107-116. https://doi.org/10.1016/j.conbuildmat.2008.01.011
  6. Harmathy, T. Z. (1970), Thermal properties of concrete at elevated temperatures, ASTM Journal 5, 47-74.
  7. Heo, Y. S. (2010), Synergistic effect of combined fibers for spalling protection of concrete in fire, Cement and Concrete Research, 40, 1546-1554. https://doi.org/10.1016/j.cemconres.2010.06.011
  8. Heo, Y. S. (2016), Effect of elevated temperatures on chemical properties, microstructure and carbonation of cement paste, Journal of Ceramic Processing Research, 17(6), 648-652. https://doi.org/10.36410/JCPR.2016.17.6.648
  9. Heo, Y. S. (2016), Development of the world's first foundational technology for predicting the Secondary and long-term Behavior of fire-damaged concrete structures and evaluating residual durability within 30 days, Korea Agency for Infrastructure Technology Advancement (KAIA), 15-214.
  10. Heo, Y. S. (2020), Development of feasible technology for evaluating thermal damage level of concrete in fire scenes, Korea Institute of Civil Engineering and Building Technology (KICT), 29-119.
  11. Kim, S. S., Lee, J. B., Kim, I. K., and Song, J. J. (2013), A Study on the highest exposure temperatures of exposed reinforced concrete structures at fire, Journal of the Korea Institute for Structural Maintenance and Inspection,17(2), 94-100 (in Korean). https://doi.org/10.11112/jksmi.2013.17.2.094
  12. Li, Y., Mi, T., Liu, Dong, Z., Dong, B., Tang, L., and Xing, F. (2021), Chemical and mineralogical characteristics of carbonated and uncarbonated cement pastes subjected to high temperatures, Composites Part B: Engineering, 216, 108861.
  13. Lin, W. M., Lin, T. D. and Powers-Couche, L. J. (1996), Microstructures of fire-damaged concrete, ACI Materials Journal, 93(13), 199-205. https://doi.org/10.14359/9803
  14. RILEM TC129-MHT (2000), Test method for mechanical properties of concrete at high temperature, RILEM Publications SARL, 33, 6-13.
  15. Song, H. (2003) Mechanical properties and pore structure of a cement matrix at high temperature, Ph.D Thesis, Tokyo University, Japan.