• Title/Summary/Keyword: X-ray emission

Search Result 1,303, Processing Time 0.041 seconds

THE X-RAY EMISSION FROM EARLY TYPE GALAXIES

  • Kim, Dong-Woo
    • Publications of The Korean Astronomical Society
    • /
    • v.7 no.1
    • /
    • pp.63-69
    • /
    • 1992
  • We have systematically investigated the X-ray spectra of normal galaxies, by using the Imaging Proportional Counter (IPC) data in the Einstein data base. We employed the X-ray color-color plot as well as the standard model fitting method which requires higher signal to noise ratio. We discuss X-ray emission mechanisms in terms of their spectral properties and the signature of cooling flows which are most likely present in X-ray bright early type galaxies. On the average, fits to absorbed thermal spectra show that the X-ray emission temperature of spirals is higher than that of ellipticals. This is consistent with our understanding that accreting binaries are a major X-ray source in spirals, while extended gaseous halos are present in ellipticals. The emission temperature becomes lower with increasing X-ray to optical luminosity ratio in E and S0 galaxies. This result is what we would expect if the emission of X-ray faint early type galaxies consists of a large evolved stellar component, while the gaseous emission becomes dominant in X-ray brighter galaxies. We also find a cool, self-absorbed core in some early type galaxies, which directly indicates the presence of cooling flows in such galaxies.

  • PDF

Chandra Archival Survey of Galaxy Clusters: Surface Photometry of Diffuse X-ray Emission

  • Kim, Eunhyeuk;Kim, Minsun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.77.2-77.2
    • /
    • 2012
  • We have studied the physical properties of X-ray point sources in galaxy clusters for years based on the archival observations using the most sophisticated space X-ray observatory, Chandra X-ray Observatory. Because the ultimate goal of the study is comparing the physical properties of X-ray point sources found in galaxy clusters to those in X-ray blank fields; blank fields are the regions in the sky where any noticeable cosmic diffuse X-ray emission is not observed, an important key issue regarding this study is picking out the point sources related with galaxy clusters. However we do not have red-shift information of all the X-ray point sources. Therefore as a first order approximation we will consider the point sources with smaller projected cluster-centric distance than the adopted size of galaxy clusters. As a first step of this study we perform X-ray surface photometry of ~600 galaxy clusters based on ~800 Chandra ACIS observations. We carefully investigate the radial structures of diffuse X-ray emission in 3 different energy bands. Based on the highly accurate surface photometry we determine the characteristic size of diffuse X-ray emission (i.e., the boundary of X-ray emission). We also investigate the cosmological evolution of this characteristic size of galaxy clusters. General discussion regarding the two dimensional morphology of galaxy clusters will be presented.

  • PDF

HOT GAS IN ELLIPTICAL GALAXIES

  • Kim, Dong-Woo
    • Publications of The Korean Astronomical Society
    • /
    • v.8 no.1
    • /
    • pp.199-206
    • /
    • 1993
  • We review recent systematic investigation of the X-ray spectra of early type galaxies by using the Einstein data base and present new results by the ROSAT observations. The Einstein data suggested that the galaxies with low X-ray to optical luminosity ratio may have another very soft component. ROSAT observations confirm its presence and call for further study to understand the nature of this very soft emission. The X-ray bright galaxies have emission temperature of ${\sim}\;0.8\;keV$ and show radial gradients in the sense that X-ray emission is softer and more absorbed in the inner region.

  • PDF

CNT-BASED FIELD EMISSION X-RAY SOURCE

  • Kim, Hyun Suk;Lee, Choong Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.433-433
    • /
    • 2016
  • Carbon nanotubes (CNT) emitter has widely become an attractive mechanism that draws growing interests for cold cathode field emission. CNT yarns have demonstrated its potential as excellent field emitters. It was demonstrated that a small focal spot size was achieved by manipulating some electrical parameters, such as applied bias voltage at the mesh gate, and electrostatic focal lenses, geometrical parameters, such as axial distances of the anode, and the electrostatic focal lens from the cathode assembly, and the dimension of the opening of the electrostatic lens. Electrical-optics software was used to systematically investigate the behavior of the electron beam trajectory when the aforementioned variables were manipulated. The results of the experiment agree with the theoretical simulation results. Each variable has an individual effect on the electron beam focal spot size impinging on the target anode. An optimum condition of the parameters was obtained producing good quality of X-ray images. Also, MWCNT yarn was investigated for field emission characteristics and its contribution in the X-ray generation. The dry spinning method was used to fabricate MWCNT yarn from super MWCNTs, which was fabricated by MW-PECVD. The MWCNT yarn has a significant field emission capability in both diode and the triode X-ray generation structure compared to a MWCNT. The low-voltage-field emission of the MWCNT yarn can be attributed to the field enhancing effect of the yarn due to its shape and the contribution of the high-aspect-ratio nanotubes that protrude from the sides of the yarn. Observations of the use of filters on the development of X-ray images were also demonstrated. The amount of exposure time of the samples to the X-ray was also manipulated. The MWCNT yarn can be a good candidate for use in the low voltage field emission application of X-ray imaging.

  • PDF

Analysis of Failure in Miniature X-ray Tubes with Gated Carbon Nanotube Field Emitters

  • Kang, Jun-Tae;Kim, Jae-Woo;Jeong, Jin-Woo;Choi, Sungyoul;Choi, Jeongyong;Ahn, Seungjoon;Song, Yoon-Ho
    • ETRI Journal
    • /
    • v.35 no.6
    • /
    • pp.1164-1167
    • /
    • 2013
  • We correlate the failure in miniature X-ray tubes with the field emission gate leakage current of gated carbon nanotube emitters. The miniature X-ray tube, even with a small gate leakage current, exhibits an induced voltage on the gate electrode by the anode bias voltage, resulting in a very unstable operation and finally a failure. The induced gate voltage is apparently caused by charging at the insulating spacer of the miniature X-ray tube through the gate leakage current of the field emission. The gate leakage current could be a criterion for the successful fabrication of miniature X-ray tubes.

Detection Probabilities of the X-ray Point Sources in X-ray Extended Sources

  • Kim, Min-Sun;Kim, Eun-Hyeuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.33.2-33.2
    • /
    • 2010
  • Galaxy clusters are known to be very bright in X-ray and contain a large number of X-ray point sources within the X-ray emission. However, due to the fluctuations of the X-ray emission, it is very difficult to detect faint X-ray sources and to extract accurately the photometric properties of the X-ray point sources in galaxy clusters. In addition, the most X-ray telescopes show spatially varying point spread function (PSF) and suffer from severe vignetting. The Chandra Archival Survey of Galaxy Clusters project is a wide-area ($\sim40deg^2$) survey of serendipitous Chandra X-ray sources in galaxy cluster fields, containing ~58,000 X-ray point sources in ~800 Chandra ACIS observations of ~600 galaxy clusters. This project aim to investigate the density environmental effects on the physical properties of the X-ray point sources, comparing physical properties of the X-ray point sources in galaxy clusters to those in typical fields. To utilize the sensitivity and detection probability of the X-ray point sources in galaxy clusters, we perform extensive Monte-Carlo simulations. In this poster, we compare the detection probability of the X-ray point sources in galaxy clusters to that of typical fields, and discuss quantitatively the difference between them.

  • PDF

Infrared Supernova Remnants and Their Infrared to X-ray Flux Ratios

  • Koo, Bon-Chul;Lee, Jae-Joon;Seok, Ji-Yeon;Jeong, Il-Gyo;Kim, Hyun-Jeong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.34.3-35
    • /
    • 2015
  • Recent high-resolution infrared space missions have revealed supernova remnants (SNRs) of diverse morphology in far infrared (FIR), often very different from their X-ray appearance. This suggests that the FIR emission from SNRs could be of different origins. For a sample of 20 Galactic SNRs, we examine the correlation between their FIR and X-ray properties and explore the origin of the FIR emission. We find that the SNRs with very different FIR and X-ray morphology have relatively large infrared-to-X-ray (IRX) flux ratios. We argue that the FIR emission in these SNRs is likely mainly from dust grains radiatively-heated by shock radiation. For SNRs with similar IR and X-ray morphology, the FIR emission of which is probably mostly from dust grains collisionally heated by hot plasma, we compare their IRX flux ratios with theoretical ratios from a model incorporating time-dependent dust destruction and non-equilibrium ionization cooling behind SNR shock, and discuss the implications of our result.

  • PDF

SNR 0104-72.3: A remnant of Type Ia Supernova in a Star-forming region?

  • Lee, Jae-Jun;Park, Sang-Wook;Hughes, John P.;Slane, Patrick;Burrows, David
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.87.2-87.2
    • /
    • 2011
  • We report our 110 ks Chandra observations of the supernova remnant (SNR) 0104-72.3 in the Small Magellanic Cloud (SMC). The X-ray morphology shows two prominent lobes along the northwest-southeast direction and a soft faint arc in the east. Previous low resolution X-ray images attributed the unresolved emission from the southeastern lobe to a Be/X-ray star. Our high resolution Chandra data clearly shows that this emission is diffuse, shock-heated plasma, with negligible X-ray emission from the Be star. The eastern arc is positionally coincident with a filament seen in optical and infrared observations. Its X-ray spectrum is well fit by plasma of normal SMC abundances, suggesting that it is from shocked ambient gas. The X-ray spectra of the lobes show overabundant Fe, which is interpreted as emission from the reverse-shocked Fe-rich ejecta. The overall spectral characteristics of the lobes and the arc are similar to those of Type Ia SNRs, and we propose that SNR 0104-72.3 is the first case for a robust candidate Type Ia SNR in the SMC. On the other hand, the remnant appears to be interacting with dense clouds toward the east and to be associated with a nearby star-forming region. These features are unusual for a standard Type Ia SNR. Our results suggest an intriguing possibility that the progenitor of SNR 0104-72.3 might have been a white dwarf of a relatively young population.

  • PDF

Mass constraints of coronal mass ejection plasmas observed in EUV and X-ray passbands

  • Lee, Jin-Yi;Raymond, John C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.39.1-39.1
    • /
    • 2011
  • Coronal mass ejection (CME) plasmas have been observed in EUV and X-ray passbands as well as in white light. Mass of CME has been determined using polarized brightness observed by the Large Angle and Spectrometric Coronagraph Experiment (LASCO) on board Solar and Heliospheric Observatory (SOHO). Therefore, this mass obtained from the LASCO observation indicates the total CME mass. However, the mass of CME plasma in different temperatures can be determined in EUV and X-ray passbands using observations by SOHO/EIT, STEREO/EUVI, and Hinode/XRT. Prominence/CME plasmas have been observed as absorption or emission features in EUV and X-ray passbands. The absorption features provide a lower limit to cold mass. In addition, the emission features provide an upper limit to the mass of plasmas in temperature ranges of EUV and X-ray. We determine the mass constraints using the emission measure obtained by assuming the prominence/CME structures. This work will address the mass constraints of hot and cold plasmas in CMEs, comparing to total CME mass.

  • PDF

X-RAY EMISSION FROM THE WARM-HOT INTERGALACTIC MEDIUM

  • KAASTRA JELLE S.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.375-379
    • /
    • 2004
  • In this paper I give an overview of the detection of emission from the warm-hot intergalactic medium (WHIM) in the outer parts of clusters of galaxies. The evidence for the presence of soft excess X-ray emission in 7 out of 21 clusters is summarized, and it is demonstrated that several of these clusters show the signatures of thermal emission in the outer parts. A strong signature is the presence of redshifted O VII emission at 0.57 keV. In the central parts, several clusters show also a soft excess, but m this case the observations cannot well discriminate between a thermal or non-thermal origin of the soft X-ray excess.