• Title/Summary/Keyword: X-ray detector

Search Result 457, Processing Time 0.023 seconds

Consideration of Surface Dose and Depth of Maximum Dose Using Various Detectors for High Energy X-rays (측정기에 따른 고에너지 X-선의 표면 선량 및 최대 선량 지점 고찰)

  • Lee Yong Ha;Park Kyung Ran;Lee Jong Young;Lee Ik Jae;Park Young Woo;Lee Kang Kyoo
    • Radiation Oncology Journal
    • /
    • v.21 no.4
    • /
    • pp.322-329
    • /
    • 2003
  • Purpose: It is difficult to exactly determine the surface dose and the dose distribution In buildup region of high energy X-rays by using the conventional ion chamber. The aim of this study Is to evaluate the accuracy of widely used dosimetry systems to measure the surface dose and the depth of maximum dose (d$_{max}$). Materials and Methods: We measured the percent depth dose (PDD) from the surface to the d$_{max}$ in either a water phantom or in a solid water phantom using TLD-100 chips, thimble type ion chamber, diode detector, diamond detector and Markus parallel plate ion chamber for 6 MV and 15 MV X-rays, 10$\times$10 cm$^{2}$, at SSD=100cm. We analysed the surface dose and the d$_{max}$. In order to verify the accuracy of the TLD data, we executed the Monte Carlo simulation for 5 MV X-ray beams. Results: The surface doses In 6 MV and IS MV X-rays were 29.31% and 23.36% ior Markus parallel plate ion chamber, 37.17$\%$ and 24.01$\%$ for TLD, 34.87$\%$ and 24.06$\%$ for diamond detector, 38.13$\%$ and 27.8$\%$ for diode detector, and 47.92$\%$ and 35.01$\%$ for thimble type ion chamber, respectively. in Monte Carlo simulation for 6 MV X-rays, the surface dose was 36.22$\%$, which Is similar to the 37.17$\%$ of the TLD measurement data. The d$_{max}$ In 6 WV and 15 MV X-rays was 14$\~$16 mm and 27$\~$29 mm, respectively. There was no significant difference in the d$_{max}$ among the detectors. Conclusion: There was a remarkable difference in the surface dose among the detectors. The Markus parallel plate chamber showed the most accurate result. The surface dose of the thimble ion chamber was 10$\%$ higher than that of other detectors. We suggest that the correction should be made when the surface dose of the thimble ion chamber Is used for the treatment planning ion the supeficial tumors. All the detectors used In our study showed no difference in the d$_{max}$.

Establishment of the Monoenergetic Fluorescent X-ray Radiation Fields (교정용 단일에너지 형광 X-선장의 제작)

  • Kim, Jang-Lyul;Kim, Bong-Hwan;Chang, Si-Young;Lee, Jae-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.1
    • /
    • pp.33-47
    • /
    • 1998
  • Using a combination of an X-ray generator Installed in radiation calibration laboratory of Korea Atomic Energy Research Institute (KAERI) and a series of 8 radiators and filters described in ISO-4037, monoenergetic fluorescent X-rays from 8.6 keV to 75 keV were produced. This fluorescent X-rays generated by primary X-rays from radiator were discriminated $K_{\beta}$ lines with the aid of filter material and the only $K_{\alpha}$ X-rays were analyzed with the high purity Ge detector and portable MCA. The air kerma rates were measured with the 35 co ionization chamber and compared with the calculational results, and the beam uniformity and the scattered effects of radiation fields were also measured. The beam purities were more than 90 % for the energy range of 8.6 keV to 75 keV and the air kerma rates were from 1.91 mGy/h (radiator : Au, filter : W) to 54.2 mGy (radiator : Mo, filter : Zr) at 43 cm from center of the radiator. The effective area of beam at the measurement point of air kerma rates was 12 cm ${\times}$ 12 cm and the influence of scattered radiation was less than 3 %. The fluorescent X-rays established in this study could be used for the determination of energy response of the radiation measurement devices and the personal dosemeters in low photon energy regions.

  • PDF

A novel ceramic GEM used for neutron detection

  • Zhou, Jianrong;Zhou, Xiaojuan;Zhou, Jianjin;Jiang, Xingfen;Yang, Jianqing;Zhu, Lin;Yang, Wenqin;Yang, Tao;Xu, Hong;Xia, Yuanguang;Yang, Gui-an;Xie, Yuguang;Huang, Chaoqiang;Hu, Bitao;Sun, Zhijia;Chen, Yuanbo
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1277-1281
    • /
    • 2020
  • A novel ceramic Gas Electron Multiplier (GEM) has been developed to meet the demand of high counting rate for the neutron detection which is an alternative to 3He-based detector at China Spallation Neutron Source (CSNS). An experiment was performed to measure the neutron transmittance of ceramic-GEM and FR4-GEM at the small angle neutron scattering (SANS) instrument. The result showed the ceramic-GEM has higher transmittance and less self-scattering especially for cold neutrons. One single ceramic GEM could give a gain of 102-104 in the mixture gas of Ar and CO2 (90%:10%) and its energy resolution was about 27.7% by using 55Fe X ray of 5.9 keV. A prototype has been developed in order to investigate the performances of the ceramic GEM-based neutron detector. Several neutron beam tests, including detection efficiency, spatial resolution, two-dimensional imaging, and wavelength spectrum, were carried out at CSNS and China Mianyang Research Reactor (CMRR). The results show that the ceramic GEM-based neutron detector is a good candidate to measure the high intensity neutrons.

A Study on the Characteristics of Smartphone Camera as a Medical Radiation Detector (의료 방사선 검출기로써 스마트폰 카메라의 특성에 관한 연구)

  • Kang, Han Gyu;Kim, Ho Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.143-151
    • /
    • 2016
  • The aim of this study is to investigate the optimal algorithm to extract medical radiation induced pixel signal from complementary metal-oxide semiconductor (CMOS) sensors of smartphones camera. The pixel intensity and pixel number of smartphone camera were measured as the X-ray dose was increased. The front camera of the smartphone camera has low noise property and excellent dose response as compared to the back camera of the smartphone. The indirect method which uses scintillation crystal in front of the smartphone camera, couldn't improve the X-ray detection efficiency as compared to the direct method which does not use any scintillator in front of the smartphone camera. When we used the algorithm which employing threshold level on the pixel intensity and pixel number, the dose linearity was more higher for the pixel intensity rather for the pixel number. The use of pixel intensity of Y color component which represents the grey scale, would be efficient in terms of the radiation detection efficiency and reducing the complexity of the image processing. We expect that the radiation dose monitoring can be managed effectively and systematically by using the proposed radiation detection algorithm, thus eventually will contribute to the public healthcare.

Fabrication of Bendable Gd2O2S:Tb Intensifying Screen and Evaluation of Fatigue Properties (유연한 Gd2O2S:Tb 증감지 제작 및 피로누적에 대한 영향)

  • Park, Ji-Koon;Yang, Sung-Woo;Jeon, Je-Hoon;Kim, Joo-Hee;Heo, Ye-Ji;Kang, Sang-Sik;Kim, Kyo-Tae
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.7
    • /
    • pp.611-617
    • /
    • 2017
  • In this study, it was expected that long-term stability against external mechanical external force could be secured if the phosphor layer had ductility. In this study, a bendable $Gd_2O_2S:Tb$ sensitized paper was fabricated by screen printing method and the image uniformity was evaluated through RMS analysis and histogram analysis to investigate the effect of fatigue accumulation due to long-term external force and repetitive external force. As a result, the dominant pixel area is maintained constant and the relative standard deviation is less than 10% for the long-term external force. However, for the repetitive external force, the dominant pixel area is divided into three areas and the image uniformity is adversely affected. Based on these results, it is suggested that the curved surface detector can be applied by securing the mechanical stability against the existing radiation sensitized paper. However, further studies are needed to apply it to the flexible detector. As a result, flexible radiation sensitizers can be applied to various curved surfaces, and it is expected to be applicable to various fields such as nuclear medicine, medical treatment, and industrial fields in the future.

Study on Growth Optimization of InAs/GaSb Strained-Layer Superlattice Structures by High-Resolution XRD Analysis (고분해능 XRD 분석에 의한 InAs/GaSb 응력초격자 구조의 성장 최적화 연구)

  • Kim, J.O.;Shin, H.W.;Choe, J.W.;Lee, S.J.;Kim, C.S.;Noh, S.K.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.4
    • /
    • pp.245-253
    • /
    • 2009
  • For the growth optimization of InAs/GaSb (8/8-ML) strained-layer superlattice (SLS), the structure has been grown under various conditions and modes and characterized by the high-resolution x-ray diffraction (XRD) analysis. In this study, the strain modulation is induced by changing parameters and modes, such as the growth temperature, the ratio of V/III beam-equivalent-pressure (BEP), and the growth interruption (GI), and the strain variation is analyzed by measuring the angle separation of 0th-order satellite peak in XRD patterns. The XRD results reveal that the growth temperature and the V/III(Sb/Ga) ratio are major parameters to change the crystallineity and the strain modulation in SLS structures, respectively. We have observed that the SLS samples with compressive strain prepared in this study are show a transition to tensile strain with decreasing V/III(Sb/Ga) ratio, and the GI process is a sensitive factor giving rise to strain modulation. These results obtained in this study suggest that optimized growth temperature and V/III(Sb/Ga) ratio are $350^{\circ}C$ and 20, respectively, and the appropriate GI time is approximately 3 seconds just before InAs growth that the crystallineity is maximized and the strain relaxation is minimized.

A study on dose attenuation in bone density when TBI using diode detector and TLD (전신방사선조사(TBI)시 다이오드 측정기(Diode detector) 및 열형광선량계(TLD)를 이용한 골조직 선량감쇄에 대한 고찰)

  • IM Hyun Sil;Lee Jung Jin;Jang Ahn Ki;Kim Wan Seon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.15 no.1
    • /
    • pp.67-77
    • /
    • 2003
  • I. Purpose Uniform dose distribution of the whole body is essential factor for the total body irradiation(TBI). In order to achieved this goal, we used to compensation filter to compensate body contour irregularity and thickness differences. But we can not compensate components of body, namely lung or bone. The purpose of this study is evaluation of dose attenuation in bone tissue when TBI using diode detectors and TLD system. II. Materials and Methods The object of this study were 5 patients who undergo TBI at our hospital. Dosimetry system were diode detectors and TLD system. Treatment method was bilateral and delivered 10MV X-ray from linear accelerator. Measurement points were head, neck, pelvis, knees and ankles. TLD used two patients and diode detectors used three patients. III. Results Results are as followed. All measured dose value were normalized skin dose. TLD dosimetry : Measured skin dose of head, neck, pelvis, knees and ankles were $92.78{\pm}3.3,\;104.34{\pm}2.3,\;98.03{\pm}1.4,\;99.9{\pm}2.53,\;98.17{\pm}0.56$ respectably. Measured mid-depth dose of pelvis, knees and ankles were $86{\pm}1.82,\;93.24{\pm}2.53,\;91.50{\pm}2.84$ respectably. There were $6.67\%{\sim}11.65\%$ dose attenuation at mid-depth in pelvis, knees and ankles. Diode detector : Measured skin dose of head, neck, pelvis, knees and ankles were $95.23{\pm}1.18,\;98.33{\pm}0.6,\;93.5{\pm}1.5,\;87.3{\pm}1.5,\;86.90{\pm}1.16$ respectably. There were $4.53\%{\sim}12.6\%$ dose attenuation at mid-depth in pelvis, knees and ankles. IV. Conclusion We concluded that dose measurement with TLD or diode detector was inevitable when TBI treatment. Considered dose attenuation in bone tissue, We must have adequately deduction of compensator thickness that body portion involved bone tissue.

  • PDF

The effect of zinc, iron and manganese content on gamma shielding properties of magnesium-based alloys produced using the powder metallurgy

  • Mesut Ramazan Ekici;Emre Tabar;Gamze Hosgor;Emrah Bulut ;Ahmet Atasoy
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3872-3883
    • /
    • 2024
  • This study investigates the effects of Zinc (Zn), Manganese (Mn), and Iron (Fe) additions on the microstructure, corrosion behaviour, biocompatibility, mechanical, and gamma-ray shielding properties of Magnesium (Mg) alloys prepared in various compositions using powder metallurgy (PM). The microstructure and mechanical properties of these alloys were analyzed using electron microscopes (SEM and FE-SEM) and X-ray diffraction (XRD) methods. The results showed positive changes in the material's structure when the percentage of zinc added to pure magnesium increased. It was observed that the material became ductile, and the ductile fracture increased when the zinc ratio increased. The gamma-ray shielding properties of newly produced Mg-based alloys have also been discussed since they have a high potential for use in space technologies. Radiation shielding measurements have been performed using a 3" × 3" NaI(Tl) scintillation detector NaI (Tl) gamma-ray spectrometer. The gamma-ray shielding parameters such as the linear attenuation coefficients (μl), mass attenuation coefficient (μm), effective atomic number (Zeff), half-value layer (HVL), and tenth-value layer (TVL) have been determined experimentally at photon energies of 0.511 MeV (emitted from a22Na radioactive point source) and 1.173 MeV and 1.332 MeV (emitting from a60Co radioactive point source). The obtained parameters have been compared to the theoretical results of the XCOM software, and a satisfactory agreement has been found. It can be said from the results that the Mg30Zn alloy has the best shielding properties among the produced materials.

Investigation of gamma radiation shielding capability of two clay materials

  • Olukotun, S.F.;Gbenu, S.T.;Ibitoye, F.I.;Oladejo, O.F.;Shittu, H.O.;Fasasi, M.K.;Balogun, F.A.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.957-962
    • /
    • 2018
  • The gamma radiation shielding capability (GRSC) of two clay-materials (Ball clay and Kaolin)of Southwestern Nigeria ($7.49^{\circ}N$, $4.55^{\circ}E$) have been investigated by determine theoretically and experimentally the mass attenuation coefficient, ${\mu}/{\rho}(cm^2g^{-1})$ of the clay materials at photon energies of 609.31, 1120.29, 1173.20, 1238.11, 1332.50 and 1764.49 keV emitted from $^{214}Bi$ ore and $^{60}Co$ point source. The mass attenuation coefficients were theoretically evaluated using the elemental compositions of the clay-materials obtained by Particle-Induced X-ray Emission (PIXE) elemental analysis technique as input data for WinXCom software. While gamma ray transmission experiment using Hyper Pure Germanium (HPGe) spectrometer detector to experimentally determine the mass attenuation coefficients, ${\mu}/{\rho}(cm^2g^{-1})$ of the samples. The experimental results are in good agreement with the theoretical calculations of WinXCom software. Linear attenuation coefficient (${\mu}$), half value layer (HVL) and mean free path (MFP) were also evaluated using the obtained ${\mu}/{\rho}$ values for the investigated samples. The GRSC of the selected clay-materials have been compared with other studied shielding materials. The cognizance of various factors such as availability, thermo-chemical stability and water retaining ability by the clay-samples can be analyzed for efficacy of the material for their GRSC.

Current Progress in Fabrication of Ta and Nb based STJs for an Astronomical Detector

  • Yoon, Ho-Seop;Park, Young-Sik;Park, Jang-Hyun;Yang, Min-Kyu;Lee, Jeon-Kook;Chong, Yon-Uk;Lee, Yong-Ho;Lee, Sang-Kil;Kim, Dong-Lak;Kim, Sug-Whan
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.37.3-37.3
    • /
    • 2008
  • STJ(Superconducting Tunnel Junction) technique offers next generation photon detectors exhibiting high energy resolution, high quantum efficiency and photon counting ability over the broad wavelength range from X-ray to NIR. We report the succcess in fabrication of Ta/Al-AlOx-Al/Ta and Nb/Al-AlOx-Al/Nb micro structure deposited on sapphire substrates using various techniques including UV photolithography, DC Sputtering, RIE, and PECVD technique. The characterization experiment was undertaken in an Adiabatic Demagnetization Refrigerator at an operating temperature below 50mK. The details of experimental investigations for electrical characterization of STJ of $20\sim80{\mu}m$ in side-lengths are discussed. The measured I-V curves were used to derive The detector performance indicators such as energy gap, energy resolution, normal resistance, normal resistivity, dynamic resistance, dynamic resistivity, and quality factor.

  • PDF