Browse > Article
http://dx.doi.org/10.1016/j.net.2019.11.021

A novel ceramic GEM used for neutron detection  

Zhou, Jianrong (School of Nuclear Science and Technology, Lanzhou University)
Zhou, Xiaojuan (Spallation Neutron Source Science Center)
Zhou, Jianjin (School of Nuclear Science and Technology, Lanzhou University)
Jiang, Xingfen (Spallation Neutron Source Science Center)
Yang, Jianqing (Spallation Neutron Source Science Center)
Zhu, Lin (Spallation Neutron Source Science Center)
Yang, Wenqin (Spallation Neutron Source Science Center)
Yang, Tao (Spallation Neutron Source Science Center)
Xu, Hong (Spallation Neutron Source Science Center)
Xia, Yuanguang (Spallation Neutron Source Science Center)
Yang, Gui-an (Spallation Neutron Source Science Center)
Xie, Yuguang (Spallation Neutron Source Science Center)
Huang, Chaoqiang (Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics)
Hu, Bitao (School of Nuclear Science and Technology, Lanzhou University)
Sun, Zhijia (Spallation Neutron Source Science Center)
Chen, Yuanbo (Spallation Neutron Source Science Center)
Publication Information
Nuclear Engineering and Technology / v.52, no.6, 2020 , pp. 1277-1281 More about this Journal
Abstract
A novel ceramic Gas Electron Multiplier (GEM) has been developed to meet the demand of high counting rate for the neutron detection which is an alternative to 3He-based detector at China Spallation Neutron Source (CSNS). An experiment was performed to measure the neutron transmittance of ceramic-GEM and FR4-GEM at the small angle neutron scattering (SANS) instrument. The result showed the ceramic-GEM has higher transmittance and less self-scattering especially for cold neutrons. One single ceramic GEM could give a gain of 102-104 in the mixture gas of Ar and CO2 (90%:10%) and its energy resolution was about 27.7% by using 55Fe X ray of 5.9 keV. A prototype has been developed in order to investigate the performances of the ceramic GEM-based neutron detector. Several neutron beam tests, including detection efficiency, spatial resolution, two-dimensional imaging, and wavelength spectrum, were carried out at CSNS and China Mianyang Research Reactor (CMRR). The results show that the ceramic GEM-based neutron detector is a good candidate to measure the high intensity neutrons.
Keywords
Neutron detector; Gas electron multiplier; High counting rate; $^3He$ alternative; Spallation neutron source;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J.R. Alonso, Status Report on the Spallation Neutron Source (SNS) Project, Office of Scientific & Technical Information Technical Reports 96, 1998, pp. 20643-20654. C11.
2 L.C.W. Hobbis, G.H. Rees, G.C. Stirling, A Pulsed Neutron Facility for Condensed Matter Research, Science Research Council, 1977. Rutherford Laboratory Report RL-77-064/C.
3 M. Aberg, N. Ahlfors, R. Ainsworth, et al., ESS Technical Design Report, European Spallation Source, 2012. ESS-DOC-274.
4 Y. Oyama, J-PARC and new era of science, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 562 (2006) 548-552.   DOI
5 W. Fangwei, J. Xuejun, L. Tianjiao, et al., Physical design of target station and neutron instruments for China Spallation Neutron Source, Sci. China Phys. Mech. Astron. 56 (2013) 2410-2424.   DOI
6 R.W. Hendricks, Space charge effects in proportional counters, Rev. Sci. 234 Instrum. 40 (1969) 1216-1223.   DOI
7 A. Breskin, R. Alon, M. Cortesi, et al., A concise review on THGEM detectors, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 598 (2009) 107-111.   DOI
8 G. Croci, G. Claps, R. Caniello, et al., GEM-based thermal neutron beam monitors for spallation sources, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 732 (2013) 217-220.   DOI
9 A.S. Dana, M. Daniel, The Helium-3 Shortage: Supply, Demand, and Options for Congress, Congressional Research Service, 2011, pp. 7-5700. R41419.
10 F. Sauli, GEM: A new concept for electron amplification in gas detectors, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 386 (1997) 531-534.   DOI
11 T. Tamagawa, N. Tsunoda, A. Hayato, et al., Development of gas electron multiplier foils with a laser etching technique, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 560 (2006) 418-424.   DOI
12 X. Zhang, S. Niu, Y. Xie, et al., Study of new substrate THGEMs with low neutron scattering and low radioactivity, J. Instrum. 10 (2015). P10043- P10043.   DOI
13 H. Ohshita, S. Uno, T. Otomo, et al., Development of a neutron detector with a GEM, Nucl. Instrum. Methods Phys. Res., Sect. A 623 (2010) 126-128.   DOI
14 G. Croci, G. Claps, M. Cavenago, et al., nGEM fast neutron detectors for beam diagnostics, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 720 (2013) 144-148.   DOI
15 A. Khaplanov, F. Piscitelli, J.C. Buffet, et al., Investigation of gamma-ray sensitivity of neutron detectors based on thin converter films, J. Instrum. 8 (2013). P10025-P10025.   DOI
16 J. Becker, K. Bosiger, L. Lindfeld, et al., A vertex trigger based on cylindrical multiwire proportional chambers, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 586 (2008) 190-203.   DOI
17 M. Klein, C.J. Schmidt, CASCADE, Neutron detectors for highest count rates in combination with ASIC/FPGA based readout electronics, Nucl. Instrum. Methods Phys. Res. A 628 (2011) 9-18.   DOI
18 Y. JiaQing, X. YuGuang, H. Tao, et al., Simulation and performance study of ceramic THGEM, Chin. Phys. C 6 (2015) 64-70.
19 Y. Ke, C. He, H. Zheng, et al., The time-of-flight small-angle neutron spectrometer at China spallation neutron source, Neutron News 29 (2018) 14-17.   DOI
20 X. Lei, C. XiPing, F. Leiming, et al., Fenghuang: high-intensity multi-section neutron powder diffractometer at CMRR, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 915 (2019) 31-35.   DOI
21 S. Agostinelli, J. Allison, K. Amako, et al., Geant4-a simulation toolkit, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 506 (2003) 250-303.   DOI