• Title/Summary/Keyword: X-ray Optics

Search Result 126, Processing Time 0.031 seconds

The design and characteristic of the TiNx optical film for ARAS coating (ARAS용 TiNx 광학박막의 설계제작과 특성연구)

  • Park, Moon-Chan;Jung, Boo-Young;Hwangbo, Chang-Kwon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.6 no.2
    • /
    • pp.31-35
    • /
    • 2001
  • The anti-reflective anti-static(ARAS) optical film Was designed using conducting layer $TiN_x$ by Essential Macleod program. From this results, [air ${TiN_x{\mid}SiO_2{\mid}$ glass] two layer shows wide-band AR coating in the wavelength range of 450~700 nm. The $TiN_x$ thin films were prepared on the glass substrate by RF(radio-freqency) magnetron sputtering apparatus from a Ti target in agaseous mixture of argon and nitrogen with the thickness of 7~10 nm. For the films obtained, the chemical binding energy of the films was investigated by x-ray photoelectron spectroscopy(XPS) in order to analyze the chemical nature and composition of the films. In addition, we investigated the relationship between the surface resistance and the chemical nature the sheet resistance and XPS depth profiling the chemical binding of the films.

  • PDF

Nonvolatile Vortex Random Access Memory

  • Kim, Sang-Koog;Yu, Young-Sang;Lee, Ki-Suk;Jung, Hyun-Sung;Choi, Youn-Seok;Lee, Jun-Young;Yoo, Myoung-Woo;Han, Dong-Soo;Im, Mi-Young;Fischer, Peter
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2010.06a
    • /
    • pp.15-16
    • /
    • 2010
  • PDF

Fabrication and Characteristics of Mather Type Plasma Focus System (마더형 플라즈마 집속장치의 제작과 특성)

  • 김동환;이상수;조성국;김규욱;이민희
    • Korean Journal of Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.65-72
    • /
    • 1990
  • Mather type plasma focus system is designed and fabricated, and its electrical behaviors and the ,~haracteristics of the plasma are investigated. The discharge CUlTent is measured with a Rogowski coil, and the external resistance and inductance of the system are found to be $20m\Omega, 0.2{\mu}H respectively from the measured voltage signals and current signals, and discharge inductance, magnetic, and mechanical energy are calculated. 'i'he speed of the plasma current sheath in the acceleration phase is found to vary as $P^{-0.25}\timesV^{0.38}$ and its value is about is 106 cm/sec. The electron temperature in the plasma is determined from the measurement of the X-ray transmittance with the number of X-ray filters and its value is found to be about I keY. The size of plasma, measured using X-ray pin-hole camera, is about 17 (dia.) x 30 (length)mm2. h)mm2.

  • PDF

Growth and Optical Properties of SnSe/BaF2 Single-Crystal Epilayers (SnSe/BaF2 단결정 박막의 성장과 광학적 특성)

  • Lee, II Hoon;Doo, Ha Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.7 no.2
    • /
    • pp.209-215
    • /
    • 2002
  • This study investigated the crystal growth, crystalline structure and the basic optical properties of $SnSe/BaF_2$ epilayers. The SnSe epilayer was grown on $BaF_2$(111) insulating substrates using a hot wall epitaxy(HWE) technique. It was found from the analysis of X-ray diffraction patterns that $SnSe/BaF_2$ epilayer was growing to single crystal with orthorhombic structure oriented [111] along the growth direction. Using Rutherford back scattering(RBS), the atomic ratios of the SnSe was found to be stoichiometric, almost 50 : 50. The best values for the full width at half maximum (FWHM) of the DCXRD was 163 arcsec for SnSe epilarer. The epilayer-thickness dependence of the FWHM of the DCXRD shows that the quality of the $SnSe/BaF_2$ is as expected. The dielectric function ${\varepsilon}$(E) of a semiconductor is closely related to its electronic energy band structure and such relation can be drawn from features around the critical points in the optical spectra. The real and imaginary parts(${\varepsilon}_1$ and ${\varepsilon}_2$) of the dielectric function ${\varepsilon}$ of SnSe were measured. These data are analyzed using a theoretical model known as the model dielectric function(MDF). The optical constants related to dielectric function such as the complex refractive index(n*-n+ik), absorption coefficient (${\alpha}$) and normal- incidence reflectivity (R) are also presented for $SnSe/BaF_2$.

  • PDF

Developement of Scope for Military Rangefinder Using Schmidt Prism and Biprism Theory of Optometric Instrument (안광학기기에 사용되는 바이프리즘원리와 슈미트 프리즘을 이용한 군사 거리측정기용 스코프 개발)

  • Cha, Jung-Won;Lee, Dong-Hee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.2
    • /
    • pp.167-175
    • /
    • 2015
  • Purpose: The new-type rangefinder, which is using the biprism principle, is introduced to develop the range finder which can be easily carried by soldiers, and in order to realize those technologies specifically, we try to develop a scope for military rangefinder by doing optical design which can secure enough space to move the biprism. Methods: After setting up the verious initial condition to realize two kinds of goals, that are the securement of enough space to move the biprism and the easy-exchangeability of two kinds of biprisms, and then the optical system was optimized by using optical design program CodeV in order to minimize the finite ray aberrations. Results: We designed the biprism housing to makes it possible to swap the two kinds of biprisms. It was appeared that the Schmidt prism is suitable as erecting prism which can make sure the space to move the biprism. 16.5 mm was good for the face length of Schmidt prism. The optical system with a Schmidt prism and a biprism was designed, and the finite ray aberrations was minimized. Conclusions: We developed a 5X scope for an optical rangefinder using a biprism and a Schmidt prism with 16.5 mm face length. This scope is valid for the optical system which has the effective field angle of ${\pm}3.6^{\circ}$, and the finite ray aberrations are well controlled within the ${\pm}8.95^{\prime}$.

Current Status of the Synchrotron Small-Angle X-ray Scattering Station BL4C1 at the Pohang Accelerator Laboratory

  • Jorg Bolze;Kim, Jehan;Huang, Jung-Yun;Seungyu Rah;Youn, Hwa-Shik;Lee, Byeongdu;Shin, Tae-Joo;Moonhor Ree
    • Macromolecular Research
    • /
    • v.10 no.1
    • /
    • pp.2-12
    • /
    • 2002
  • The small-angle X-ray scattering (SAXS) beamline BL4C1 at the 2.5 GeV storage ring of the Pohang Accelerator Laboratory (PAL) has been in its first you of operation since August 2000. During this first stage it could meet the basic requirements of the rapidly growing domestic SAXS user community, which has been carrying out measurements mainly on various polymer systems. The X-ray source is a bending magnet which produces white radiation with a critical energy of 5.5 keV. A synthetic double multilayer monochromator selects quasi-monochromatic radiation with a bandwidth of ca. 1.5%. This relatively low degree of monochromatization is sufficient for most SAXS measurements and allows a considerably higher flux at the sample as compared to monochromators using single crystals. Higher harmonics from the monochromator are rejected by reflection from a flat mirror, and a slit system is installed for collimation. A charge-coupled device (CCD) system, two one-dimensional photodiode arrays (PDA) and imaging plates (IP) are available its detectors. The overall performance of the beamline optics and of the detector systems has been checked using various standard samples. While the CCD and PDA detectors are well-suited for diffraction measurements, they give unsatisfactory data from weakly scattering samples, due to their high intrinsic noise. By using the IP system smooth scattering curves could be obtained in a wide dynamic range. In the second stage, stating from August 2001, the beamline will be upgraded with additional slits, focusing optics and gas-filled proportional detectors.

Simulation of an X-ray Fresnel Zone Plate with Nonideal Factors

  • Chen, Jie;Fan, Quanping;Wang, Junhua;Yuan, Dengpeng;Wei, Lai;Zhang, Qiangqiang;Liao, Junsheng;Xu, Min
    • Current Optics and Photonics
    • /
    • v.4 no.1
    • /
    • pp.9-15
    • /
    • 2020
  • Fresnel zone plates have been widely used in many applications, such as x-ray telescopes, microfluorescence, and microimaging. To obtain an x-ray Fresnel zone plate, many fabrication methods, such as electron-beam etching, ion-beam etching and chemical etching, have been developed. Fresnel zone plates fabricated by these methods will inevitably lead to some nonideal factors, which have an impact on the focusing characteristics of the zone plate. In this paper, the influences of these nonideal factors on the focusing characteristics of the zone plate are studied systematically, by numerical simulations based on scalar diffraction theory. The influence of the thickness of a Fresnel zone plate on the absolute focusing efficiency is calculated for a given incident x-ray's wavelength. The diffraction efficiency and size of the focal spot are calculated for different incline angles of the groove. The simulations of zone plates without struts, with regular struts, and with random struts are carried out, to study the effects of struts on the focusing characteristics of a zone plate. When a Fresnel zone plate is used to focus an ultrashort x-ray pulse, the effect of zone-plate structure on the final pulse duration is also discussed.