• Title/Summary/Keyword: X-ray Imaging Sensor

Search Result 47, Processing Time 0.03 seconds

duoPIXTM X-ray Imaging Sensor Composing of Multiple Thin Film Transistors in a Pixel for Digital X-ray Detector (픽셀내 다수의 박막트랜지스터로 구성된 듀오픽스TM 엑스선 영상센서 제작)

  • Seung Ik, Jun;Bong Goo, Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.7
    • /
    • pp.969-974
    • /
    • 2022
  • In order to maximize dynamic range and to minimize image lag in digital X-ray imaging, diminishing residual parasitic capacitance in photodiode in pixels is critically necessary. These requirements are more specifically requested in dynamic X-ray imaging with high frame rate and low image lag for industrial 2D/3D automated X-ray inspection and medical CT imaging. This study proposes duoPIXTM X-ray imaging sensor for the first time that is composed of reset thin film transistor, readout thin film transistor and photodiode in a pixel. To verify duoPIXTM X-ray imaging sensor, designing duoPIXTM pixel and imaging sensor was executed first then X-ray imaging sensor with 105 ㎛ pixel pitch, 347 mm × 430 mm imaging area and 3300 × 4096 pixels (13.5M pixels) was fabricated and evaluated by using module tester and image viewer specifically for duoPIXTM imaging sensor.

Evaluation of Dynamic X-ray Imaging Sensor and Detector Composing of Multiple In-Ga-Zn-O Thin Film Transistors in a Pixel (픽셀내 다수의 산화물 박막트랜지스터로 구성된 동영상 엑스레이 영상센서와 디텍터에 대한 평가)

  • Seung Ik Jun;Bong Goo Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.359-365
    • /
    • 2023
  • In order to satisfy the requirements of dynamic X-ray imaging with high frame rate and low image lag, minimizing parasitic capacitance in photodiode and overlapped electrodes in pixels is critically required. This study presents duoPIXTM dynamic X-ray imaging sensor composing of readout thin film transistor, reset thin film transistor and photodiode in a pixel. Furthermore, dynamic X-ray detector using duoPIXTM imaging sensor was manufactured and evaluated its X-ray imaging performances such as frame rate, sensitivity, noise, MTF and image lag. duoPIXTM dynamic X-ray detector has 150 × 150 mm2 imaging area, 73 um pixel pitch, 2048 × 2048 matrix resolution(4.2M pixels) and maximum 50 frames per second. By means of comparison with conventional dynamic X-ray detector, duoPIXTM dynamic X-ray detector showed overall better performances than conventional dynamic X-ray detector as shown in the previous study.

A study on imaging device sensor data QC (영상장치 센서 데이터 QC에 관한 연구)

  • Dong-Min Yun;Jae-Yeong Lee;Sung-Sik Park;Yong-Han Jeon
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.52-59
    • /
    • 2022
  • Currently, Korea is an aging society and is expected to become a super-aged society in about four years. X-ray devices are widely used for early diagnosis in hospitals, and many X-ray technologies are being developed. The development of X-ray device technology is important, but it is also important to increase the reliability of the device through accurate data management. Sensor nodes such as temperature, voltage, and current of the diagnosis device may malfunction or transmit inaccurate data due to various causes such as failure or power outage. Therefore, in this study, the temperature, tube voltage, and tube current data related to each sensor and detection circuit of the diagnostic X-ray imaging device were measured and analyzed. Based on QC data, device failure prediction and diagnosis algorithms were designed and performed. The fault diagnosis algorithm can configure a simulator capable of setting user parameter values, displaying sensor output graphs, and displaying signs of sensor abnormalities, and can check the detection results when each sensor is operating normally and when the sensor is abnormal. It is judged that efficient device management and diagnosis is possible because it monitors abnormal data values (temperature, voltage, current) in real time and automatically diagnoses failures by feeding back the abnormal values detected at each stage. Although this algorithm cannot predict all failures related to temperature, voltage, and current of diagnostic X-ray imaging devices, it can detect temperature rise, bouncing values, device physical limits, input/output values, and radiation-related anomalies. exposure. If a value exceeding the maximum variation value of each data occurs, it is judged that it will be possible to check and respond in preparation for device failure. If a device's sensor fails, unexpected accidents may occur, increasing costs and risks, and regular maintenance cannot cope with all errors or failures. Therefore, since real-time maintenance through continuous data monitoring is possible, reliability improvement, maintenance cost reduction, and efficient management of equipment are expected to be possible.

Digital X-Ray Technology and Applications (디지털 엑스선 기술과 응용)

  • Jeong, J.W.;Kang, J.T.;Kim, J.W.;Park, S.;Lee, M.L.;Song, Y.H.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.5
    • /
    • pp.1-13
    • /
    • 2019
  • In modern times, X-ray imaging has become a necessary tool for early diagnosis, quality control, nondestructive testing, and security screening. X-ray imaging equipment generally comprises an X-ray generator and an image sensor. Most commercially available X-ray generators employ filament-thermionic electron-based X-ray tubes, thus demonstrating typical analog behavior, such as slow response and large stray X-rays. Furthermore, digital X-ray sources, which have been studied extensively using field electron emitters manufactured from nanometer-scale materials, provide fast and accurately controlled ultra-shot X-rays. This could usher in a new era of X-ray imaging in medical diagnosis and nondestructive inspections. Specifically, digital X-ray sources, with reduced X-ray dose, can significantly improve the temporal and spatial resolution of fluoroscopy and computed tomography. Recently, digital X-ray tube technologies based on carbon nanotubes, developed by Electronics and Telecommunications Research Institute, have been transferred to several companies and commercialized for dental imaging for the first time.

Comparison of three digital radiographic imaging systems for the visibility of endodontic files (근관 파일의 인지도 평가시 세 가지 디지털 방사선영상시스템의 비교)

  • Park Jong-Won;Kim Eun-Kyung;Han Won-Jeong
    • Imaging Science in Dentistry
    • /
    • v.34 no.3
    • /
    • pp.145-150
    • /
    • 2004
  • Purpose: To compare three digital radiographic imaging sensors by evaluating the visibility of endodontic file tips with interobserver reproducibility and assessing subjectively the clarity of images in comparison with the x-ray film images. Materials and Methods: Forty-five extracted sound premolars were used for this study. Fifteen plaster blocks were made with three premolars each and #8, 10, 15 K-flexofiles were inserted into the root canal of premolars. They were radiographically exposed using periapical x-ray films (Kodak Insight Dental film, Eastmann Kodak company, Rochester, USA), Digora imaging plates (Soredex-Orion Co., Helsinki, Finland), CDX 2000HQ sensors (Biomedisys Co., Seoul, Korea), and CDR sensors (Schick Inc., Long Island, USA). The visibility of endodontic files was evaluated with interobserver reproducibility, which was calculated as the standard deviations of X, Y coordinates of endodontic file tips measured on digital images by three oral and maxillofacial radiologists. The clarity of images was assessed subjectively using 3 grades, i.e. plus, equal, and minus in comparison with the conventional x-ray film images. Results: Interobserver reproducibility of endodontic file tips was the highest in CDR sensor (p < 0.05) only except at Y coordinates of #15 file. In the subjective assessment of the image clarity, the plus grade was the most frequent in CDR sensor at all size of endodontic file (p < 0.05). Conclusion : CDR sensor was the most superior to the other sensors, CDX 2000HQ sensor and Digora imaging plate in the evaluation of interobserver reproducibility of endodontic file tip and subjective assessment of image clarity.

  • PDF

The Study on Composition ratio of Iodine in Hybrid X-ray Sensor (혼합형 X선 센서에서 a-Se 의 Iodine 첨가비 연구)

  • Gong, Hyung-Gi;Park, Ji-Koon;Choi, Jang-Yong;Moon, Chi-Wung;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.366-369
    • /
    • 2002
  • At present, the study of direct digital X-ray detector and indirect digital X-ray detector proceed actively. But it needs high thickness and high voltage in selenium for high ionization rate. Therefore, we carried out the study of electric characteristics of a-Se with additive ratio of Iodine in drafting study for developing Hybrid X -ray Sensor for complementing direct digital X -ray detector and indirect digital X-ray detector in this paper. On this, there are formed Amorphous selenium multi-layers by sticking phosphor layer$(Gd_{2}O_{2}S(Eu^{2+}))$ using optical adhesives of EFIRON Co. Amorphous selenium multi-layers having dielectric layer(parylene) has characteristics of low dark-current, high X-ray sensitivity. So we can acquired a enhanced signal to noise ratio. We make Amorphous selenium multi-layers with $30{\mu}m$ thickness on glass.

  • PDF

Gas Typed Digital X-ray Image Sensor Using PDP Fabrication Process (PDP공정을 이용한 가스 방식의 디지털 X-ray 영상 센서)

  • Kim, Chang Man;Kim, Si Hyung;Nam, Ki Chang;Kim, Sang Hee;Song, Kwang Soup
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.322-327
    • /
    • 2012
  • Parallel-plate-type scanning sensors have been commercially used for X-ray imaging sensors. In this study, we manufactured the scan typed 1D X-ray image sensor that can be used to obtain scanning images, by using the plasma display panel (PDP) fabrication process. We fabricated drift and pixel electrodes in the glass chamber and injected Xe gas at atmospheric pressure. We evaluated the intensity of a pixel signal depending on the bias voltage on the drift electrode and investigated the characteristics of shielding effect on the single pixel using lead (Pb). The adsorption rate of X-ray photon is low (4%) on the soda lime glass (1.1mm) and the electrical signal detected on the X-ray sensor was increased in the high bias voltage. We acquired digital X-ray scanning image with our DAS (data acquisition system) and sensor scanning system.

Study of Noise Reducion in X-ray image (X-선 영상에서의 노이즈 제거에 대한 연구)

  • Park, Jong-Duk;Jeon, Sung-Chae;Huh, Young;Jin, Seong-Oh
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.391-392
    • /
    • 2006
  • In x-ray imaging system, twokinds of noises are involved. First, the charge generated from the radiation interaction with the detector during exposure is modeled by Poisson process. Second, the signal is then added by readout electronics noise, which is modeled by Gaussian distribution. In this paper, we applied Wiener filter and Wavelet to remove noise from medical X-ray image, the result shows that wavelet yield better segmentation results than the wiener filter.

  • PDF

X-ray Sensitivity of Hybrid-type Sensor based on CaWO4-Selenium for Digital X-ray Imager

  • Park, Ji-Koon;Park, Jang-Yong;Kang, Sang-Sik;Lee, Dong-Gil;Kim, Jae-Hyung;Nam, Sang-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.4
    • /
    • pp.133-137
    • /
    • 2004
  • The development of digital x-ray detector has been extensively progressed for the application of various medical modalities. In this study, we introduce a new hybrid-type x-ray detector to improve problems of a conventional direct or indirect digital x-ray image technology, which composed of multi-layer structure using a CaWO$_4$ phosphor and amorphous selenium (a-Se) photoconductor. The leakage current of our detector was found to be ∼180 pA/cm$^2$ at 10 V/m, which was significantly reduced than that of a single a-Se detector. The x-ray sensitivity was measured as the value of 4230 pC/cm$^2$/mR at 10 V/m. We found that the parylene thin film between a CaWO$_4$ phosphor and an a-Se layer acts as an insulator to prevent charge injection from indium thin oxide (ITO) electrode into an a-Se layer under applied bias.

Study of Discharge Erasing Method of a-Se based Digital X-ray Detector (a-Se을 이용한 디지털 X-선 검출기의 Discharge Erasing Method에 관한 연구)

  • Lee, Dong-Gil;Park, Ji-Koon;Choi, Jang-Yong;Kang, Sang-Sik;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.395-398
    • /
    • 2002
  • Many research group started study to develope x-ray detector using thin film transistor from 1970. But realization of TFT based x-ray detector development was caused by progress of thin film transistor liquid crystal display(TFTLCD) device technology in 1990. The main current of TFT technology is display device. Research results expend TFT technology field from display device to sensor manufacture technology. These days many research group in the world realize various digital x-ray detector. In this study, We compare discharge erasing method to visible light erasing method in a-Se based digital x-ray detector. Visible light erasing method is known reset process in direct conversion x-ray detector. Digital x-ray detector using visible light erasing method is not adaptive for conventional x-ray device, because of its thickness. And it is not avaliable for real-time imaging for digital fluoroscopy, because of its long reset time. In this study we overcome these limitations and show new idea for real-time imaging method.

  • PDF