• Title/Summary/Keyword: X-ray Image

Search Result 1,253, Processing Time 0.028 seconds

Skin and Bone Segmentation Technique Using Dynamic Gaussian Filter Based on High Frequency Components in X-Ray Images (X-Ray 영상에서 고주파 성분 기반 동적 가우시안 필터를 이용한 피부와 뼈 영역 분할 기법)

  • Nam, Youn-man;Park, Tae-eun;Kim, Ju-wan;Song, Doo Heon;Kim, Kwang-baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.137-140
    • /
    • 2021
  • 본 논문에서는 X-Ray 영상에서 발 뼈의 골절 영역을 분석 및 진단하기 위한 전단계로서 X-Ray 영상에서 뼈와 피부 영역을 분할하는 방법을 제안한다. 제안된 방법은 X-Ray 영상의 피부 영역과 발 뼈 영역을 분할하기 위해 가우시안 필터를 적용하여 DOG 영상을 생성한다. 그러나 기존의 가우시안 필터는 정적으로 적용되기 때문에 영상을 촬영하는 부위와 각도에 따라 영상의 특성이 달라지는 X-Ray 영상에 적용하기에 부적합하다. 따라서 부위와 각도에 따라 영상의 특성 변화에 민감하지 않는 동적 가우시안 필터를 제안한다. 실험 결과에서는 제안하는 동적 가우시안 필터와 기존의 정적인 가우시안 필터를 각각 적용하여 생성된 DOG 영상에 대해서 발 뼈 영역과 피부 영역을 분할하고, 효율성을 TPR과 특이도로 분석한 결과, 제안된 동적 가우시안 필터를 적용한 방법이 정적 가우시안 필터보다 평균적으로 TPR는 0.12%와 특이도는 평균적으로 0.36%가 개선된 것을 확인하였다.

  • PDF

The Characteristic Curves of Commercial Medical X-ray Films (상용 의학용 X-ray 필름의 특성곡선)

  • Heo, Hoon;Jeong, Yeon-Tae;Lee, Jae-Sung
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.19 no.2
    • /
    • pp.12-21
    • /
    • 2001
  • For the purpose of determining characteristics of widely used commercial medical x-ray films, which are used for obtaining the Linac-grams for radiational treatment of cancers, we placed several commercial x-ray films at a fixed distance form the linear accelerator. After varying the exposed amount of radiation step by step, we could obtain a continually increasing density image for each film whose densities were determined by microdensitometer readings. The characteristic curves of the films were obtained by plotting the densities vs. the exposed radiation amounts, and their ${\gamma}$ values were determined. These values can be used to suggest a minimum necessary amount of exposed radiation to get a useful Linac-gram. The measured ${\gamma}$ values of the characteristic curves of the Kodak-DVP/RA-1 film were 1.73 when used 6MV x-ray, 1.70 when used 15MV of intensity. For the Konica-AX film, ${\gamma}$ values were 1.29 and 1.18 respectively. The result suggests that the effective conditions for high resolution of a L-gram be 6 MV of x-ray intensity and about 3 rad of exposed dose on a Kodak-DVP/RA-1 film.

  • PDF

Trial of Computer Simulation of Image Reconstruction from Incomplete Data for New CT with Reduced Exposure

  • Hayakawa, Yoshinori;Furuya, Toshimitsu;Sakakibara, Norifumi
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.382-384
    • /
    • 2002
  • Filtered-Back-Projection technique is used in X-ray CT image reconstruction. This requires X-ray transmission data from all directions. As the transverse cross-section of the body is approximately 50 cm, transmitted X-rays in this direction are strongly attenuated. If X-ray transmission data in this direction is avoided, exposure to the patients seems to be reduced one 20th of usual value. Some alternative method has to be found for clinically sufficient image quality. New methods are under development and tentative results are reported that utilizes the principle of superposition.

  • PDF

Basic Physical Principles and Clinical Applications of Computed Tomography

  • Jung, Haijo
    • Progress in Medical Physics
    • /
    • v.32 no.1
    • /
    • pp.1-17
    • /
    • 2021
  • The evolution of X-ray computed tomography (CT) has been based on the discovery of X-rays, the inception of the Radon transform, and the development of X-ray digital data acquisition systems and computer technology. Unlike conventional X-ray imaging (general radiography), CT reconstructs cross-sectional anatomical images of the internal structures according to X-ray attenuation coefficients (approximate tissue density) for almost every region in the body. This article reviews the essential physical principles and technical aspects of the CT scanner, including several notable evolutions in CT technology that resulted in the emergence of helical, multidetector, cone beam, portable, dual-energy, and phase-contrast CT, in integrated imaging modalities, such as positron-emission-tomography-CT and single-photon-emission-computed-tomography-CT, and in clinical applications, including image acquisition parameters, CT angiography, image adjustment, versatile image visualizations, volumetric/surface rendering on a computer workstation, radiation treatment planning, and target localization in radiotherapy. The understanding of CT characteristics will provide more effective and accurate patient care in the fields of diagnostics and radiotherapy, and can lead to the improvement of image quality and the optimization of exposure doses.

Metal Area Segmentation in X-ray CT Images Using the RNA (Relevant Neighbor Ar ea) Principle

  • Kim, Youngshin;Kwon, Hyukjoon;Kim, Joongkyu;Yi, Juneho
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.12
    • /
    • pp.1442-1448
    • /
    • 2012
  • The problem of Metal Area Segmentation (MAS) in X-ray CT images is a very hard task because of metal artifacts. This research features a practical yet effective method for MAS in X-ray CT images that exploits both projection image and reconstructed image spaces. We employ the Relevant Neighbor Area (RNA) idea [1] originally developed for projection image inpainting in order to create a novel feature in the projection image space that distinctively represents metal and near-metal pixels with opposite signs. In the reconstructed result of the feature image, application of a simple thresholding technique provides accurate segmentation of metal areas due to nice separation of near-metal areas from metal areas in its histogram.

A Study on Feasibility of Total Variation Algorithm in Skull Image using Various X-ray Exposure Parameters (다양한 X-ray 촬영조건을 이용하여 획득한 skull 영상에서의 Total Variation 알고리즘의 가능성 연구)

  • Park, Sung-Woo;Lee, Jong-In;Lee, Youngjin
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.765-771
    • /
    • 2019
  • Noise in skull X-ray imaging is inevitable, which reduces imaging quality and diagnostic accuracy and increases errors due to the nature of digital imaging devices. Increasing the dose can attenuate noise, but that could lead to big problems with higher exposure dose received by patients. Thus, noise reduction algorithms are actively being studied at low doses to solve dose problems and reduce noise at the same time. Wiener filter and median filter have been widely used, with the disadvantages of poor noise reduction efficiency and loss of much information about imaging boundary. The purpose of this study is to apply total variation (TV) algorithm to skull X-ray imaging that can compensate for the problems of previous noise reduction efficiency to assess quantitatively and compare them. For this study, skull X-ray imaging is obtained using various kVp and mAs using the skull phantom using the X-ray device of Siemens. In addition, contrast to noise ratio (CNR) and coefficient of variation (COV) are compared and measured when noisy image, median filter, Wiener filter and TV algorithm were applied to each phantom imaging. Experiments showed that when TV algorithms were applied, CNR and COV characteristics were excellent under all conditions. In conclusion, we've been able to see if we can use TV algorithm to improve image quality and CNR could be seen to increase due to the decrease in noise as the amount of increased mAs. On the other hand, COV decreased as the amount of increased mAs, and when kVp increased, noise was reduced and the transmittance was increased, so COV was reduced.

Design of the Digital X-ray System using Photo-diode Arrays (광다이오드 배열소자를 이용한 디지탈 X선 촬영 시스템의 설계에 관한 연구)

  • 박광석;이태수
    • Journal of Biomedical Engineering Research
    • /
    • v.5 no.2
    • /
    • pp.149-154
    • /
    • 1984
  • A digital X-ray system was designed using photo-diode arrays. This system consists of the following five sub-units; (1) slit and driving system (2) X-ray detection system (3) data-conversion system (4) computer (5) image display system. Using this system, one can obtain scatter-free, high contrast, digitally formatted, high quality image, as compared with the conventional film-based X-ray system.

  • PDF

A Novel Approach to Enhance Dual-Energy X-Ray Images Using Region of Interest and Discrete Wavelet Transform

  • Ullah, Burhan;Khan, Aurangzeb;Fahad, Muhammad;Alam, Mahmood;Noor, Allah;Saleem, Umar;Kamran, Muhammad
    • Journal of Information Processing Systems
    • /
    • v.18 no.3
    • /
    • pp.319-331
    • /
    • 2022
  • The capability to examine an X-ray image is so far a challenging task. In this work, we suggest a practical and novel algorithm based on image fusion to inspect the issues such as background noise, blurriness, or sharpness, which curbs the quality of dual-energy X-ray images. The current technology exercised for the examination of bags and baggage is "X-ray"; however, the results of the incumbent technology used show blurred and low contrast level images. This paper aims to improve the quality of X-ray images for a clearer vision of illegitimate or volatile substances. A dataset of 40 images was taken for the experiment, but for clarity, the results of only 13 images have been shown. The results were evaluated using MSE and PSNR metrics, where the average PSNR value of the proposed system compared to single X-ray images was increased by 19.3%, and the MSE value decreased by 17.3%. The results show that the proposed framework will help discern threats and the entire scanning process.

An Effective Extraction Algorithm of Pulmonary Regions Using Intensity-level Maps in Chest X-ray Images (흉부 X-ray 영상에서의 명암 레벨지도를 이용한 효과적인 폐 영역 추출 알고리즘)

  • Jang, Geun-Ho;Park, Ho-Hyun;Lee, Seok-Lyong;Kim, Deok-Hwan;Lim, Myung-Kwan
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.7
    • /
    • pp.1062-1075
    • /
    • 2010
  • In the medical image application the difference of intensity is widely used for the image segmentation and feature extraction, and a well known method is the threshold technique that determines a threshold value and generates a binary image based on the threshold. A frequently-used threshold technique is the Otsu algorithm that provides efficient processing and effective selection criterion for choosing the threshold value. However, we cannot get good segmentation results by applying the Otsu algorithm to chest X-ray images. It is because there are various organic structures around lung regions such as ribs and blood vessels, causing unclear distribution of intensity levels. To overcome the ambiguity, we propose in this paper an effective algorithm to extract pulmonary regions that utilizes the Otsu algorithm after removing the background of an X-ray image, constructs intensity-level maps, and uses them for segmenting the X-ray image. To verify the effectiveness of our method, we compared it with the existing 1-dimensional and 2-dimensional Otsu algorithms, and also the results by expert's naked eyes. The experimental result showed that our method achieved the more accurate extraction of pulmonary regions compared to the Otsu methods and showed the similar result as the naked eye's one.

A Study on the X-ray Image Reading of Radiological Dispersal Device (방사능 폭발물의 X-ray 영상판독에 관한 연구)

  • Geun-Woo Jeong;Kyong-Jin Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_2
    • /
    • pp.437-443
    • /
    • 2024
  • The purpose of radiological Dispersal Device(RDD) is to kill people by explosives and to cause radiation exposure by dispersing radioactive materials. And It is a form of explosive that combines radioactive materials such as Co-60 and Ir-192 with improvised explosives. In this study, we tested and evaluated whether it was possible to read the internal structure of an explosive using X-rays in a radioactive explosive situation. The improvised explosive device was manufactured using 2 lb of model TNT explosives, one practice detonator, one 9V battery, and a timer switch in a leather briefcase measuring 41×35×10 cm3. The radioactive material used was the Co-60 source used in the low-level gamma ray irradiation device operated at the Advanced Radiation Research Institute of the Korea Atomic Energy Research Institute. The radiation dose used was gamma ray energy of 1.17 MeV and 1.33 MeV from a Co-60 source of 2208 Ci. The dose rates are divided into 0.5, 1, 2, and 4 Gy/h, and the exposure time was divided into 1, 3, 5, and 10 minutes. Co-60 source was mixed with the manufactured explosive and X-ray image reading was performed. As a result of the experiment, the X-ray image appeared black in all conditions divided by dose rate and time, and it was impossible to confirm the internal structure of the explosive. This is because γ-rays emitted from radioactive explosives have higher energy and stronger penetrating power than X-rays, so it is believed that imaging using X-rays is limited By blackening the film. The results of this study are expected to be used as basic data for research and development of X-ray imaging that can read the internal structure of explosives in radioactive explosive situations.