• Title/Summary/Keyword: X-ray Image

Search Result 1,253, Processing Time 0.03 seconds

An Enhanced Algorithm for an Optimal High-Frequency Emphasis Filter Based on Fuzzy Logic for Chest X-Ray Images

  • Shin, Choong-Ho;Lee, Jung-Jai;Jung, Chai-Yeoung
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.4
    • /
    • pp.264-269
    • /
    • 2015
  • The chest X-ray image cannot be focused in the same manner that optical lenses are and the resultant image generally tends to be slightly blurred. Therefore, the methods to improve the quality of chest X-ray image have been studied. In this paper, the inherent noises of the input images are suppressed by adding the Laplacian image to the original. First, the chest X-ray image using an Gaussian high pass filter and an optimal high frequency emphasis filter has shown improvements in the edges and contrast of flat areas. Second, using fuzzy logic_histogram equalization, each pixel of the chest X-ray image shows the normal distribution of intensities that are not overexposed. As a result, the proposed method has shown the enhanced edge and contrast of the images with the noise canceling effect.

X-Ray Image Enhancement Using a Boundary Division Wiener Filter and Wavelet-Based Image Fusion Approach

  • Khan, Sajid Ullah;Chai, Wang Yin;See, Chai Soo;Khan, Amjad
    • Journal of Information Processing Systems
    • /
    • v.12 no.1
    • /
    • pp.35-45
    • /
    • 2016
  • To resolve the problems of Poisson/impulse noise, blurriness, and sharpness in degraded X-ray images, a novel and efficient enhancement algorithm based on X-ray image fusion using a discrete wavelet transform is proposed in this paper. The proposed algorithm consists of two basics. First, it applies the techniques of boundary division to detect Poisson and impulse noise corrupted pixels and then uses the Wiener filter approach to restore those corrupted pixels. Second, it applies the sharpening technique to the same degraded X-ray image. Thus, it has two source X-ray images, which individually preserve the enhancement effects. The details and approximations of these sources X-ray images are fused via different fusion rules in the wavelet domain. The results of the experiment show that the proposed algorithm successfully combines the merits of the Wiener filter and sharpening and achieves a significant proficiency in the enhancement of degraded X-ray images exhibiting Poisson noise, blurriness, and edge details.

The Study on Measurement of Relative Conversion Factor in X-ray Image Intensifier (X선영상증배관의 상대변환계수 측정에 관한 검토)

  • Kim, Sung-Chul;Shin, Sung-Ill;Lee, Sun-Sook;Huh, Joon;Kim, Sung-Soo
    • Journal of radiological science and technology
    • /
    • v.20 no.2
    • /
    • pp.28-33
    • /
    • 1997
  • For the Evaluation of X-ray image intensifier, we measured radiation dose at input of I. I., brightness and fluorescence at output of I. I. by using X-ray exposure meter, optometer and fluorescence meter for the relative conversion factor. Especially, by using fluorescence meter, we could easily get relative conversion factor without having regulated machine by JIS. Since using, the quality of image intensifier is going down. Consequently, it needs continuous quality maintenance.

  • PDF

A Robust Crack Filter Based on Local Gray Level Variation and Multiscale Analysis for Automatic Crack Detection in X-ray Images

  • Peng, Shao-Hu;Nam, Hyun-Do
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.1035-1041
    • /
    • 2016
  • Internal cracks in products are invisible and can lead to fatal crashes or damage. Since X-rays can penetrate materials and be attenuated according to the material’s thickness and density, they have rapidly become the accepted technology for non-destructive inspection of internal cracks. This paper presents a robust crack filter based on local gray level variation and multiscale analysis for automatic detection of cracks in X-ray images. The proposed filter takes advantage of the image gray level and its local variations to detect cracks in the X-ray image. To overcome the problems of image noise and the non-uniform intensity of the X-ray image, a new method of estimating the local gray level variation is proposed in this paper. In order to detect various sizes of crack, this paper proposes using different neighboring distances to construct an image pyramid for multiscale analysis. By use of local gray level variation and multiscale analysis, the proposed crack filter is able to detect cracks of various sizes in X-ray images while contending with the problems of noise and non-uniform intensity. Experimental results show that the proposed crack filter outperforms the Gaussian model based crack filter and the LBP model based method in terms of detection accuracy, false detection ratio and processing speed.

A Study on Pathological Pattern Detection using Neural Network on X-Ray Chest Image (신경회로망을 이용한 X-선 흉부 영상의 병변 검출에 관한 연구)

  • 이주원;이한욱;이종회;조원래;장두봉;이건기
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.2
    • /
    • pp.371-378
    • /
    • 2000
  • In this study, we proposed pathological pattern detection system for X-ray chest image using artificial neural network. In a physical examination, radiologists have checked on the chest image projected the view box by a magnifying glass and found out what the disease is. Here, the detection of X-ray fluoroscopy is tedious and time-consuming for human doing. Lowering of efficiency for chest diagnosis is caused by lots mistakes of radiologist because of detecting the micro pathology from the film of small size. So, we proposed the method for disease detection using artificial neural network and digital image processing on a X-ray chest image. This method composes the function of image sampling, median filter, image equalizer used neural network and pattern recognition used neural network. We confirm this method has improved the problem of a conventional method.

  • PDF

Image Quality Enhancement for Chest X-ray images (흉부 엑스레이 영상을 위한 화질 개선 알고리즘)

  • Park, So Yeon;Song, Byung Cheol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.10
    • /
    • pp.97-107
    • /
    • 2015
  • The initial X-ray images obtained from a digital X-ray machine have a wide data range and uneven brightness level than normal images. In particular, in Chest X-ray images, it is necessary to improve naturally all of the parts such as ribs, spine, tissue, etc. These X-ray images can not be improved enough from conventional image quality enhancement algorithms because their characteristics are different from ordinary images'. This paper proposes to eliminate unnecessary background from an input image and expand the histogram range of the image. Then, we adjust the weight per frequency band of the image for improvement of contrast and sharpness. Finally, jointly taking the advantages of global contrast enhancement and local contrast enhancement methods we obtain an improved X-ray image suitable for effective diagnosis in comparison with the existing methods. Experimental results show quantitatively that the proposed algorithm provides better X-ray images in terms of the discrete entropy and saturation than the previous works.

Sharpness Enhancement of Tooth X-ray Images Through Elimination of Complicated Background (복잡한 배경 제거를 통한 치아 X-ray 영상의 선예도 개선)

  • Kun-Woo Na;Keun-Ho Rew
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.1
    • /
    • pp.11-19
    • /
    • 2023
  • To remove unnecessary background from tooth X-ray images and enhance the sharpness of tooth and gum images, image processing techniques including contrast adjustment and histogram equalization are used. The introduction of two methods for detecting the boundary of the tooth and gum region and separating the tooth and gum from the background. In both cases, the background of the tooth X-ray images could be removed as a result, improving the quality of the images. The proposed method improves MTF (Modulation Transfer Function), an image performance indicator, as a result of measuring MTF. The original image's spatial frequency ranged from 4.73 to 11.40 lp/mm at the 10% response, whereas the proposed image's spatial frequency ranged from 10.90 to 11.85 lp/mm, giving uniformly enhanced results. In contrast, tooth and gums could not be completely separated from the background using Apple's Lift subject from background function.

Image System Using Dual Energy Detector (이중 에너지 검출기를 이용한 영상 시스템)

  • Yeo, Hwa-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3517-3523
    • /
    • 2010
  • Single exposure dual X-ray imaging can be used to separate soft and dense-material images for medical and industrial applications. This study keep focusing baggage inspection system(BIS) specifically. New detector modules for single exposure dual X-ray imaging are consisted of low energy detector (LED) and high energy detector (HED). First, the optimized thickness of copper filter coupled HED to separate low energy and high energy was simulated by the given X-ray energy (140 kVp, 1 mA) using Monte Carlo simulation codes, MCNPX. So as a result of simulation, the copper filter thickness is 0.7 mm. For the design of PIN photodiode, ATLAS device simulation tool was used. 16 channels PIN photodiode of 1.5 mm ${\times}$ 3.2 mm for Dual X-ray imaging detector was fabricated in the process of ETRI. And its dark current and quantum efficiency, terminal capacitance were measured. It was proven that the Lanex Fast B coupled HED were a sufficient candidate to replace the CsI(Tl) commerced in dual X-ray system, since these give a strong signal, overcoming system noise. Finally dual X-ray image was acquired through correction of the LED X-ray Image and the HED X-ray Image.

Analysis of X-ray image Qualities -accuracy of shape and clearness of image using X-ray digital tomosynthesis (디지털 영상 합성에 의한 X선 단층 영상의 형상 정확도와 선명도 분석)

  • Roh, Yeong-Jun;Cho, Hyung-Suck;Kim, Hyeong-Cheol;Kim, Sung-Kwon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.5
    • /
    • pp.558-567
    • /
    • 1999
  • X-ray laminography and DT(digital tomosynthesis) that can form a cross-sectional image of 3-D objects promis to be good solutions for inspecting interior defects of industrial products. DT is a kind of laminography technique and the difference is in the fact that it synthesizes the several projected images by use of the digitized memory and computation. The quality of images acquired from the DT system varies according to image synthesizing methods, the number of images used in image synthesizing, and X-ray projection angles. In this paper, a new image synthesizing method named 'log-root method' is proposed to get clear and accurate cross-sectional images, which can reduce both artifact and blurring generated by materials out of focal plane. To evaluate the quality of cross-sectional images, two evaluating criteria : (1) shape accuracy and (2) clearness of the cross-sectional images are defined. Based on these criteria, a series of simulations are performed, and the results show the superiority of the new synthesizing method over the existing ones such as averaging and minimum methods.

  • PDF

3D Non-local Means(NLM) Algorithm Based on Stochastic Distance for Low-dose X-ray Fluoroscopy Denoising (저선량 X-ray 영상의 잡음 제거를 위한 확률 거리 기반 3차원 비지역적 평균 알고리즘)

  • Lee, Min Seok;Kang, Moon Gi
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.4
    • /
    • pp.61-67
    • /
    • 2017
  • Low-dose X-ray fluoroscopic image sequences to avoid radiation exposure risk are contaminated by quantum noise. To restore these noisy sequences, we propose a 3D nonlocal means (NLM) filter based on stochastic distancesed can be applied to the denoising of X-ray fluoroscopic image sequences. The stochastic distance is obtained within motion-compensated noise filtering support to remove the Poisson noise. In this paper, motion-adaptive weight which reflected the frame similarity is proposed to restore the noisy sequences without motion artifact. Experimental results including comparisons with conventional algorithms for real X-ray fluoroscopic image sequences show the proposed algorithm has a good performance in both visual and quantitative criteria.