Hye Sung Park ;Na Hye Kwon ;Sang Rok Kim ;Hwidong Yoo;Jin Sung Kim ;Sang Hyoun Choi;Dong Wook Kim
Nuclear Engineering and Technology
/
v.55
no.10
/
pp.3854-3859
/
2023
Background: This study aims to develop an evaluator that can quickly and accurately evaluate the shielding of low-energy industrial radiation generators. Methods: We used PyQt to develop a graphical user interface (GUI)-based program and employed the calculation methodology reported in the National Council on Radiation Protection and Measurements (NCRP)-49 for shielding calculations. We gathered the necessary factors for shielding evaluation using two libraries designed for Python, pandas and NumPy, and processed them into a database. We verified the effectiveness of the proposed program by comparing the results with those from safety reports of six domestic facilities. Results: After verifying the effectiveness of the program using the NCRP-49 example, we obtained an average error rate of 1.73%. When comparing the facility safety report and results obtained using the program, we found that the error rate was between 1.09% and 6.51%. However, facilities that did not use a defined shielding methodology were underestimated by 31.82% compared with the program (the final barrier thickness satisfied the shielding standard). Conclusion: The developed program provides a fast and accurate shielding evaluation that can assist personnel that work in radiation generator facilities and government officials in reviewing safety.
Breast shooting performance management and quality control of the generator is applied to the amount of current IEC(International Electrotechnical Commission) 60601-2-45 tube voltage and tube current are based on standards that were proposed in the analysis of the test results were as follows. Tube voltage according to the value of the standard deviation by year of manufacture from 2001 to 2010 as a 42-3.15 showed the most significant, according to the year of manufacture by tube amperage value of the standard deviation to 6.38 in the pre-2000 showed the most significant, manufactured after 2011 the standard deviation of the devices, the PAE(Percent Average Error) was relatively low. This latest generation device was manufactured in the breast of the tube voltage and tube diagnosed shooting the correct amount of current to maintain the performance that can be seen. The results of this study as the basis for radiography diagnosed breast caused by using the device's performance and maintain quality control, so the current Food and Drug Administration "about the safety of diagnostic radiation generator rule" specified in the test cycle during three years of self-inspection radiation on a radiation generating device ensure safety and performance of the device using a coherent X-ray(constancy) by two ultimately able to keep the radiation dose to the public to reduce the expected effect is expected.
Kim, Byung-Ki;Kim, Sang-Keun;Cha, Seon-Hwa;Choi, Jun-Gu;Lee, Jun;Kim, Min-Woo;Kim, Sun-Bae;Kim, Gyeong-Sun
Korean Journal of Digital Imaging in Medicine
/
v.9
no.2
/
pp.17-21
/
2007
The purpose to recognize change of average pixel value of acquisition image by control panel's density and right set up method of speed (sensitivity) and exposure dose(mAs) change that dose in purpose digital flatpanel-detector. X -ray generator DHF-158H2(Hitachi, Japan). Detector CXDI 4OG(Canon, Japan), 12 : 1 grid and exposure ray 135 kVp, 250 mA, 10 ms. focus-detector distance 180 cm and used AEC mode. DICOM reflex analysis program used image J that is digital reflex analysis program that offer in United States America National Health Center(National Institutes of Health : NlH) phantom used chest phantom(Anthromorphic : Flukebrome.medicaI USA). An experiment chest phantom that consist by formation equivalence material use because density value( -3${\sim}$+3) in X-ray control panel and seep that is speed step(slow, medium, fast) each control experimentalize. image analysis reflex neted through an experiment using image j each image compare. These was change in dose according to slow, medium, fast and density's change in an experiment result. According to detector sensitivity and density condition set, dose was relationship dissimilarity 500% from 200%. The dose came highest when is density +3 to slow. and dose more increases gray scale's extent could know that rise. Could know whether how equipment set is important through this experiment. cause of disease which change by digital radiography system forward is thought to increase more, it is considered that suitable education by this and continuous interest about equipment need absolutely.
This study developed education contents of measuring spatial dose with virtual reality simulation and applied to students majoring radiological science. The virtual reality(VR) contents with measuring spatial dose rate in the radiation controlled area was developed based on the simulation from pilot study. In this simulation, the tube voltage and tube current can be set from 60 to 120 kVp in 10 kVp steps and 10 to 40 mAs in 10 mAs increments, and the distance from source can be set from 30 to 400 cm continuously. Iron and lead shields can be placed between the source and the detector, and shielding thickness can be set by 1 mm increments ranging from 1 to 20 mm. We surveyed to students for evaluating improvement of understanding spatial dose rate between before and after education by VR simulation. The survey was conducted with 5 questions(X-ray exposure factors, effects by distance from the source, effects from using shield, depending on material and thickness of shield, concept and measuring of spatial dose rate) and all answers showed significant improvement. Therefore, this VR simulation content will be well used in education for spatial dose rate and radiation safety environments.
In this study, we investigated the effects of tube voltage (kVp) and tube current (mAs) on an exposure index (EI) applied to a digital radiography. There used an inverter type digital X-ray generator and an image receptor (IR) utilized a portable wireless detector without a grid. Radiographic images were acquired using a cone pyramid phantom produced using a 3D printer. The X-ray tube voltage was increased from 40 kVp to 120 kVp with 10 kVp increment, and the tube current was increased from 1 mAs to 128 mAs with the twice increment. As a result, kVp had logarithmic relationship with the EI as high $R^2$ value, and mAs had a very high linear relationship too. Also, there was a high correlation between the area dose and the EI of the IR, with the $R^2$ value being 0.76 or more. In conclusion, it had showed that mAs affected the EI linearly, and that it could be advantageous to adjust the easy-to-predict mAs to maintain proper image qualities.
To examine the performance of a diagnostic X-ray system, we tested a linearity, reproducibility, and Half Value Layer(HVL). The linearity was examined 4 times of irradiation with a given condition, and we recorded a level of radiation. We then calculated the mR/mAs. And the measured value should not be more than 0.1. If the measured value was more than 0.1, we could know that the linearity was decreased. The reproducibility was analyzed 10 times of irradiations at 80kVp, 200mA, 20mAs and 120kVp, 300mA, 8mAs. The values from these analyses were integrated into CV equation, and we could get outputs. The reproducibility was good if the output was lower than 0.05. HVL was measured 3 times of irradiation without a filter, and we inserted additional HLV filters with 0, 1, 2, 4 mm of thickness. We tested the values until we get the measured value less than a half of the value measured without additional filter. We tested the linearity, the reproducibility, and HVL of 5 diagnostic X-ray generators in this facilities. The linearity of No. 1 and No. 5 generator didn't satisfy the standard for radiation safety around 300mA~400mA and 100mA~200mA, respectively. HVL of No.1 generator was not satisfied at 80kVp. The outputs were higher in the three-phase equipment than the single-phase equipment. The old generators need to maintain and exchange of components based on the these results. Then, we could contribute to getting more exact diagnosis increasing a quality of the image and decreasing an expose dose of radiation.
We will provide basic data on the evaluation of patient dose in terms of DECT quality control by comparing the equipment-provided dose with the measured dose according to the configuration method of the X-ray generator by the manufacturer of the dual-energy CT unit. For computed tomography (CT) equipment, Discovery 750HD, Aquilion ONE GENESIS Edition, and Somatom Definition Flash were used. The $CTDI_{vol}$ value was measured by inserting the Unfors Xi ion chamber into a 32 cm PMMA acryl Phantom. The results of estimated $CTDI_{vol}$ DECT and measured $CTDI_{vol}$ showed that the dose difference between DECT 80 + 140 kVp of G company was at least 0.51% and -1.90% max, and measured $CTDI_{vol}$ was slightly lower (p<0.05). The difference of 80 + 140 kVp of S company was the minimum of 5.84% and the maximum of 7.52% (p<0.05). The measured $CTDI_{vol}$ was less than estimated $CTDI_{vol}$. The C company's 80 + 135 kVp showed a difference of at least 7.58% and a maximum of 13.58% (P<0.05), and all of measured $CTDI_{vol}$ was less. The linearity of exposure dose for all DECT equipment was very linearly reflected with $R^2$ being 0.97 or above, and the measured dose of the ionization chamber was less than the predicted dose of the monitor.
Zinc oxide(ZnO) thin films were deposited on r-plane sapphires from a solution containing zinc acetate. The films were obtained in a hot wall reactor by the pyrolysis of an aerosol produced by an ultrasonic generator. The crystallinity, surface morphology and composition of the films have been studied using the x-ray diffraction method(XRD) scanning electron microscopy(SEM) and Auger electron spectroscopy (AES) respectively. The influences of the substrate temperature on the crystallinity of the films were studied. Strongly (110) oriented ZnO films were obtained at a substrate temperature of $350^{\circ}C$. The resistivity was increased to above $3{\times}10^{6}{\Omega}{\cdot}cm$ with copper doping and vapor oxidation.
Thanks to the great development of technology in radiation, we are now able to reduce radiation exposure to the patients, and the radiographer and expenses in medical sector. We are also trying to produce ideal images which maintain useful information. These kinds of effort are increasing over the world. For that reason, we should get images which include necessary data of patients. Then it also can help to reduce radiation exposure to the patients. Therefore, we need to know the problems that cause a falling off in image's quality and check on generator in case of their electronic and mechanical errors. And moreover, we should anticipate the possibility of devices errors and prevent them with regular quality control. This investigation was conducted in medical institutions, institute of educations and hospitals. They are all in Seongnam-City. We used PMX-III, kVp meter to implement kVp test, mR / mAs output test, light fiel / beam alignment test, Reproducibility of exposure dose, half value layer test, reproducibility of exposure time test. in the case of hospitals, they perceive the importance of regular quality control and organize the regular quality control team so they can be satisfied with the error standard in most experiments. On the other hand, when it comes to medical institutions and institute of educations, they perceive the importance of regular quality control less than hospitals do. Radiographer need to understand the importance of regular quality control and practice it so they can get the fine ideal image with the lower dose to the patient.
The spatial dose distribution was measured with ionization chamber as preliminary study to evaluate operator dose and to study dose reduction during neuro-interventional procedures. The zone of operators was divided into four area (45, 135, 225, and 315 degree).We supposed that operator exist on the four area and indicated location of critical organs(eyes, breast, gonad). The spatial doses were measured depending on distance( 80, 100, 120, and 140 cm) and location of critical organs. The spatial doses of area of 225 degree were 114.5 mR/h (eyes location), 143.1 mR/h (breast location) and 147 mR/h (gonad location) in 80 cm. When changed location of x-ray generator, spatial dose increased in $18.1{\pm}10.5%$, averagely. We certified spatial dose in the operator locations, Using the results of this study, It is feasible to protect operator from radiation in neuro-interventional procedures.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.