• Title/Summary/Keyword: X-ray Generator

Search Result 156, Processing Time 0.022 seconds

Preliminary study for the development of radiation safety evaluation methodology for industrial kV-rated radiation generator facilities

  • Hye Sung Park ;Na Hye Kwon ;Sang Rok Kim ;Hwidong Yoo;Jin Sung Kim ;Sang Hyoun Choi;Dong Wook Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3854-3859
    • /
    • 2023
  • Background: This study aims to develop an evaluator that can quickly and accurately evaluate the shielding of low-energy industrial radiation generators. Methods: We used PyQt to develop a graphical user interface (GUI)-based program and employed the calculation methodology reported in the National Council on Radiation Protection and Measurements (NCRP)-49 for shielding calculations. We gathered the necessary factors for shielding evaluation using two libraries designed for Python, pandas and NumPy, and processed them into a database. We verified the effectiveness of the proposed program by comparing the results with those from safety reports of six domestic facilities. Results: After verifying the effectiveness of the program using the NCRP-49 example, we obtained an average error rate of 1.73%. When comparing the facility safety report and results obtained using the program, we found that the error rate was between 1.09% and 6.51%. However, facilities that did not use a defined shielding methodology were underestimated by 31.82% compared with the program (the final barrier thickness satisfied the shielding standard). Conclusion: The developed program provides a fast and accurate shielding evaluation that can assist personnel that work in radiation generator facilities and government officials in reviewing safety.

Testing and Analysis of Tube Voltage and Tube Current in The Radiation Generator for Mammography (유방촬영용 방사선발생장치의 관전압과 관전류 시험 분석)

  • Jung, Hong-Ryang;Hong, Dong-Hee;Han, Beom-Hui
    • Journal of radiological science and technology
    • /
    • v.37 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Breast shooting performance management and quality control of the generator is applied to the amount of current IEC(International Electrotechnical Commission) 60601-2-45 tube voltage and tube current are based on standards that were proposed in the analysis of the test results were as follows. Tube voltage according to the value of the standard deviation by year of manufacture from 2001 to 2010 as a 42-3.15 showed the most significant, according to the year of manufacture by tube amperage value of the standard deviation to 6.38 in the pre-2000 showed the most significant, manufactured after 2011 the standard deviation of the devices, the PAE(Percent Average Error) was relatively low. This latest generation device was manufactured in the breast of the tube voltage and tube diagnosed shooting the correct amount of current to maintain the performance that can be seen. The results of this study as the basis for radiography diagnosed breast caused by using the device's performance and maintain quality control, so the current Food and Drug Administration "about the safety of diagnostic radiation generator rule" specified in the test cycle during three years of self-inspection radiation on a radiation generating device ensure safety and performance of the device using a coherent X-ray(constancy) by two ultimately able to keep the radiation dose to the public to reduce the expected effect is expected.

Study on the Exposure Dose(mAs) and acquisition Image set up Density Display and Sensitivity of control Panel for the Digital Flat-Panel-Detector (디지털 평판형 검출기에서 Control Panel의 Density Display와 Sensitivity 설정이 조사선량(mAs)과 획득영상에 미치는 영향에 관한 연구)

  • Kim, Byung-Ki;Kim, Sang-Keun;Cha, Seon-Hwa;Choi, Jun-Gu;Lee, Jun;Kim, Min-Woo;Kim, Sun-Bae;Kim, Gyeong-Sun
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.9 no.2
    • /
    • pp.17-21
    • /
    • 2007
  • The purpose to recognize change of average pixel value of acquisition image by control panel's density and right set up method of speed (sensitivity) and exposure dose(mAs) change that dose in purpose digital flatpanel-detector. X -ray generator DHF-158H2(Hitachi, Japan). Detector CXDI 4OG(Canon, Japan), 12 : 1 grid and exposure ray 135 kVp, 250 mA, 10 ms. focus-detector distance 180 cm and used AEC mode. DICOM reflex analysis program used image J that is digital reflex analysis program that offer in United States America National Health Center(National Institutes of Health : NlH) phantom used chest phantom(Anthromorphic : Flukebrome.medicaI USA). An experiment chest phantom that consist by formation equivalence material use because density value( -3${\sim}$+3) in X-ray control panel and seep that is speed step(slow, medium, fast) each control experimentalize. image analysis reflex neted through an experiment using image j each image compare. These was change in dose according to slow, medium, fast and density's change in an experiment result. According to detector sensitivity and density condition set, dose was relationship dissimilarity 500% from 200%. The dose came highest when is density +3 to slow. and dose more increases gray scale's extent could know that rise. Could know whether how equipment set is important through this experiment. cause of disease which change by digital radiography system forward is thought to increase more, it is considered that suitable education by this and continuous interest about equipment need absolutely.

  • PDF

Development and Usefulness Evaluation of Virtual Reality Simulator for Education of Spatial Dose Rate in Radiation Controlled Area (방사선관리구역의 공간선량률 교육을 위한 가상현실 시뮬레이터의 개발과 유용성 평가)

  • Jeong-Min Seo
    • Journal of radiological science and technology
    • /
    • v.46 no.6
    • /
    • pp.493-499
    • /
    • 2023
  • This study developed education contents of measuring spatial dose with virtual reality simulation and applied to students majoring radiological science. The virtual reality(VR) contents with measuring spatial dose rate in the radiation controlled area was developed based on the simulation from pilot study. In this simulation, the tube voltage and tube current can be set from 60 to 120 kVp in 10 kVp steps and 10 to 40 mAs in 10 mAs increments, and the distance from source can be set from 30 to 400 cm continuously. Iron and lead shields can be placed between the source and the detector, and shielding thickness can be set by 1 mm increments ranging from 1 to 20 mm. We surveyed to students for evaluating improvement of understanding spatial dose rate between before and after education by VR simulation. The survey was conducted with 5 questions(X-ray exposure factors, effects by distance from the source, effects from using shield, depending on material and thickness of shield, concept and measuring of spatial dose rate) and all answers showed significant improvement. Therefore, this VR simulation content will be well used in education for spatial dose rate and radiation safety environments.

Effects of Tube Voltage and Tube Current on Exposure Index : Focused on Radiographic Images of Cone Pyramid Phantom (관전압과 관전류량이 노출 지수에 미치는 영향 : 원뿔형 피라미드 팬텀 방사선영상 중심으로)

  • Seoung, You-Hun
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.749-755
    • /
    • 2019
  • In this study, we investigated the effects of tube voltage (kVp) and tube current (mAs) on an exposure index (EI) applied to a digital radiography. There used an inverter type digital X-ray generator and an image receptor (IR) utilized a portable wireless detector without a grid. Radiographic images were acquired using a cone pyramid phantom produced using a 3D printer. The X-ray tube voltage was increased from 40 kVp to 120 kVp with 10 kVp increment, and the tube current was increased from 1 mAs to 128 mAs with the twice increment. As a result, kVp had logarithmic relationship with the EI as high $R^2$ value, and mAs had a very high linear relationship too. Also, there was a high correlation between the area dose and the EI of the IR, with the $R^2$ value being 0.76 or more. In conclusion, it had showed that mAs affected the EI linearly, and that it could be advantageous to adjust the easy-to-predict mAs to maintain proper image qualities.

Performance Measurement of Diagnostic X Ray System (진단용 X선 발생장치의 성능 측정)

  • You, Ingyu;Lim, Cheonghwan;Lee, Sangho;Lee, Mankoo
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.6
    • /
    • pp.447-454
    • /
    • 2012
  • To examine the performance of a diagnostic X-ray system, we tested a linearity, reproducibility, and Half Value Layer(HVL). The linearity was examined 4 times of irradiation with a given condition, and we recorded a level of radiation. We then calculated the mR/mAs. And the measured value should not be more than 0.1. If the measured value was more than 0.1, we could know that the linearity was decreased. The reproducibility was analyzed 10 times of irradiations at 80kVp, 200mA, 20mAs and 120kVp, 300mA, 8mAs. The values from these analyses were integrated into CV equation, and we could get outputs. The reproducibility was good if the output was lower than 0.05. HVL was measured 3 times of irradiation without a filter, and we inserted additional HLV filters with 0, 1, 2, 4 mm of thickness. We tested the values until we get the measured value less than a half of the value measured without additional filter. We tested the linearity, the reproducibility, and HVL of 5 diagnostic X-ray generators in this facilities. The linearity of No. 1 and No. 5 generator didn't satisfy the standard for radiation safety around 300mA~400mA and 100mA~200mA, respectively. HVL of No.1 generator was not satisfied at 80kVp. The outputs were higher in the three-phase equipment than the single-phase equipment. The old generators need to maintain and exchange of components based on the these results. Then, we could contribute to getting more exact diagnosis increasing a quality of the image and decreasing an expose dose of radiation.

Comparison of Estimated and Measured Doses of Dual-energy Computed Tomography (Dual-energy 컴퓨터단층촬영에서 장비 제공선량과 측정선량 비교)

  • Kim, Yung-Kyoon;Kim, Yon-Min
    • Journal of radiological science and technology
    • /
    • v.41 no.5
    • /
    • pp.405-411
    • /
    • 2018
  • We will provide basic data on the evaluation of patient dose in terms of DECT quality control by comparing the equipment-provided dose with the measured dose according to the configuration method of the X-ray generator by the manufacturer of the dual-energy CT unit. For computed tomography (CT) equipment, Discovery 750HD, Aquilion ONE GENESIS Edition, and Somatom Definition Flash were used. The $CTDI_{vol}$ value was measured by inserting the Unfors Xi ion chamber into a 32 cm PMMA acryl Phantom. The results of estimated $CTDI_{vol}$ DECT and measured $CTDI_{vol}$ showed that the dose difference between DECT 80 + 140 kVp of G company was at least 0.51% and -1.90% max, and measured $CTDI_{vol}$ was slightly lower (p<0.05). The difference of 80 + 140 kVp of S company was the minimum of 5.84% and the maximum of 7.52% (p<0.05). The measured $CTDI_{vol}$ was less than estimated $CTDI_{vol}$. The C company's 80 + 135 kVp showed a difference of at least 7.58% and a maximum of 13.58% (P<0.05), and all of measured $CTDI_{vol}$ was less. The linearity of exposure dose for all DECT equipment was very linearly reflected with $R^2$ being 0.97 or above, and the measured dose of the ionization chamber was less than the predicted dose of the monitor.

Properties of ZnO Films on r-plane Sapphires Prepared by Ultrasonic Spray Pyrolysis (초음파(超音波) 분무(噴霧) 열분해법(熱分解法)으로 r-plane 사파이어 위에 증착(蒸着)된 ZnO 막(膜)의 특성(特性))

  • Ma, Tae-Young;Moon, Hyun-Yul;Lee, Soo-Chul
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.155-162
    • /
    • 1997
  • Zinc oxide(ZnO) thin films were deposited on r-plane sapphires from a solution containing zinc acetate. The films were obtained in a hot wall reactor by the pyrolysis of an aerosol produced by an ultrasonic generator. The crystallinity, surface morphology and composition of the films have been studied using the x-ray diffraction method(XRD) scanning electron microscopy(SEM) and Auger electron spectroscopy (AES) respectively. The influences of the substrate temperature on the crystallinity of the films were studied. Strongly (110) oriented ZnO films were obtained at a substrate temperature of $350^{\circ}C$. The resistivity was increased to above $3{\times}10^{6}{\Omega}{\cdot}cm$ with copper doping and vapor oxidation.

  • PDF

Investigation of Standard Evaluation for the Quality Control of General X-ray Systems

  • Kang, Byung-Sam;Son, Jin-Hyun;Kim, Byoung-Jun;Park, Deok-Woo;Jung, Byoung-Hoon;Lee, Hyo-Jin;Hong, Ji-Young;Kim, Seung-Chul
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.12 no.2
    • /
    • pp.71-79
    • /
    • 2010
  • Thanks to the great development of technology in radiation, we are now able to reduce radiation exposure to the patients, and the radiographer and expenses in medical sector. We are also trying to produce ideal images which maintain useful information. These kinds of effort are increasing over the world. For that reason, we should get images which include necessary data of patients. Then it also can help to reduce radiation exposure to the patients. Therefore, we need to know the problems that cause a falling off in image's quality and check on generator in case of their electronic and mechanical errors. And moreover, we should anticipate the possibility of devices errors and prevent them with regular quality control. This investigation was conducted in medical institutions, institute of educations and hospitals. They are all in Seongnam-City. We used PMX-III, kVp meter to implement kVp test, mR / mAs output test, light fiel / beam alignment test, Reproducibility of exposure dose, half value layer test, reproducibility of exposure time test. in the case of hospitals, they perceive the importance of regular quality control and organize the regular quality control team so they can be satisfied with the error standard in most experiments. On the other hand, when it comes to medical institutions and institute of educations, they perceive the importance of regular quality control less than hospitals do. Radiographer need to understand the importance of regular quality control and practice it so they can get the fine ideal image with the lower dose to the patient.

  • PDF

Measurement of Spatial Dose Distribution for evaluation operator dose during Neuro-interventional Procedures (두경부 질환의 인터벤션 시술 시 시술자의 피폭선량평가를 위한 공간선량측정에 관한 연구)

  • Han, Su-Chul;Hong, Dong-Hee
    • Journal of radiological science and technology
    • /
    • v.39 no.3
    • /
    • pp.323-328
    • /
    • 2016
  • The spatial dose distribution was measured with ionization chamber as preliminary study to evaluate operator dose and to study dose reduction during neuro-interventional procedures. The zone of operators was divided into four area (45, 135, 225, and 315 degree).We supposed that operator exist on the four area and indicated location of critical organs(eyes, breast, gonad). The spatial doses were measured depending on distance( 80, 100, 120, and 140 cm) and location of critical organs. The spatial doses of area of 225 degree were 114.5 mR/h (eyes location), 143.1 mR/h (breast location) and 147 mR/h (gonad location) in 80 cm. When changed location of x-ray generator, spatial dose increased in $18.1{\pm}10.5%$, averagely. We certified spatial dose in the operator locations, Using the results of this study, It is feasible to protect operator from radiation in neuro-interventional procedures.