• Title/Summary/Keyword: X-ray Absorption Spectroscopy

Search Result 337, Processing Time 0.039 seconds

Electronic Structure Study of Gold Selenides

  • 이왕로;정동운
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.2
    • /
    • pp.147-149
    • /
    • 1999
  • The electronic structures of α- and β-gold selenides are studied. α- and β-AuSe are known as mixed valence compounds having linear (AuSe2, Au+) and square-planar (AuSe4, Au3+) units in their structure simultaneously. Our EHTB calculations, however, show that the oxidation states of Au in α- and β-AuSe are both close to +1. This is because the frontier orbitals are largely made up of Se p-orbitals and Au d-orbitals that lie well below the Fermi level. Our results are consistent with the recent X-ray absorption spectroscopy study on AuSe which show that all Au in the compound exhibit a monovalent state independent of their chemical environments.

Estimation of Phase Ratio for TiO2 Powders by XRD and XAS (XRD와 XAS에 의한 TiO2 분말의 상분율 결정)

  • Rha, Sa-Kyun;Lee, Youn Seoung
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.5
    • /
    • pp.469-474
    • /
    • 2012
  • The crystallinity and phase ratio of anatase to rutile in $TiO_2$ were estimated by x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS). Traditionally, the structural characterization of $TiO_2$ powders has been carried out by XRD techniques, which are comparatively easy in use and analysis. However, materials with amorphous phase, nano-sized or nano-structured crystallinities cannot be fully characterized by XRD because XRD analysis has a limit for abnormal contributions of the nano-crystal such as the surface contribution. From the comparison with the experimental and calculated Ti K-edge XAS spectra, we found the possibility of efficient estimation in the crystalinites and the phase ratio of anatase to rutile for nano-sized $TiO_2$ mixture.

Photocatalytic Degradation of Methylene Blue in Presence of Graphene Oxide/TiO2 Nanocomposites

  • Kim, Sung Phil;Choi, Hyun Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2660-2664
    • /
    • 2014
  • A simple method of depositing titanium dioxide ($TiO_2$) nanoparticles onto graphene oxide (GO) as a catalytic support was devised for photocatalytic degradation of methylene blue (MB). Thiol groups were utilized as linkers to secure the $TiO_2$ nanoparticles. The resultant GO-supported $TiO_2$ (GO-$TiO_2$) sample was characterized by transmission electron microscopy (TEM), near-edge X-ray absorption fine structure (NEXAFS), and X-ray photoelectron spectroscopy (XPS) measurements, revealing that the anatase $TiO_2$ nanoparticles had effectively anchored to the GO surface. In the photodegradation of MB, GO-$TiO_2$ exhibited remarkably enhanced photocatalytic efficiency compared with thiolated GO and pure $TiO_2$ nanoparticles. Moreover, after five-cycle photodegradation experiment, no obvious deactivation was observed. The overall results showed that thiolated GO provides a good support substrate and, thereby, enhances the photodegradation effectiveness of the composite photocatalyst.

Preparation and Characterization of Ultra Thin TaN Films Prepared by RF Magnetron Sputtering

  • Reddy, Akepati Sivasankar;Jo, Hyeon-Cheol;Lee, Gi-Seon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.32.1-32.1
    • /
    • 2011
  • Ultra thin tantalum nitride (TaNx) films with various thicknesses (10 nm to 40 nm) have been deposited by rf magnetron sputtering technique on glass substrates. The as deposited films were systematically characterized by several analytical techniques such as X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, atomic force microscopy, UV-Vis-NIR double beam spectrophotometer and four point probe method. From the XRD results, the as deposited films are in amorphous nature, irrespective of the film thicknesses. The films composition was changed greatly with increasing the film thickness. SEM micrographs exhibited the densely pack microstructure, and homogeneous surface covered by small size grains at lower thickness deposited films. The surface roughness of the films was linearly increases with increasing the films thickness, consequently the transmittance decreased. The absorption edge was shifted towards higher wavelength as the film thickness increases.

  • PDF

Advanced Analysis Techniques for Oxide Cathodes

  • Je, Jung-Ho;Kim, In-Woo;Seol, Seung-Kwon;Kwon, Yong-Bum;Cho, Chang-Sik;Weon, Byung-Mook;Park, Gong-Seog;Hwang, Cheol-Ho;Hwu, Yeukuang;Tsai, Wen-Li
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.1155-1156
    • /
    • 2003
  • The advanced analysis techniques such as high resolution X-ray absorption spectroscopy (XAS), X-ray scattering, and photoelectron emission microscope (PEEM) using synchrotron radiation are probably able to open new opportunities for improving the performances of oxide cathodes with more clear and deep understanding.

  • PDF

Reaction of NO on Vanadium Oxide Surfaces: Observation of the NO Dimer Formation

  • Jeong, Hyun-Suck;Kim, Chang-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.3
    • /
    • pp.413-416
    • /
    • 2007
  • The adsorption and surface reactions of NO on a VO/V(110) surface have been investigated using X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure, and temperature programmed desorption (TPD) technique. NO is molecularly adsorbed on VO/V(110) at 80 K. As the surface coverage of NO increases, the NO dimer is formed on the surface at 80 K. Both NO and (NO)2 are adsorbed on the surface with the N-O bond perpendicular to the surface. (NO)2 decomposes at ~100 K and the reaction product is desorbed as N2O. Decomposition of NO takes place when the surface temperature is higher than 273 K.

Formation of dielectric carbon nitride thin films using a pulsed laser ablation combined with high voltage discharge plasma (펄스 레이저 애블레이션이 결합된 고전압 방전 플라즈마 장치를 이용한 유전성 질화탄소 박막의 합성)

  • Kim, Jong-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.208-211
    • /
    • 2003
  • The dielectric carbon nitride thin films were deposited onto Si(100) using a pulsed laser ablation of pure graphite target combined with a high voltage discharge plasma in nitrogen gas atmosphere. We can be calculated dielectric constant, ${\varepsilon}_s$, with a capacitance Sobering bridge method. We reported to investigate the influence of the laser ablation of graphite target and DC high voltage source for the plasma. The properties of the deposited carbon nitride thin films were influenced by the high voltage source during the film growth. Deposition rate of carbon nitride films were found to increase drastically with the increase of high voltage source. Infrared absorption clearly shows the existence of C=N bonds and $C{\equiv}N$ bonds. The carbon nitride thin films were observed crystalline phase, as confirmed by x-ray diffraction data.

  • PDF

Interaction of SO2 with Oxygen on Ni(100) Studied by XPS and NEXAFS

  • Kim, Chang-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.12
    • /
    • pp.2037-2039
    • /
    • 2006
  • The adsorption and surface reactions of $SO_2$ on Ni(100), c($2{\times}2$)_O/Ni (100) and NiO(111)/Ni(100) surfaces have been investigated using X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) technique. On Ni(100), chemisorbed $SO_2$ is formed at 160 K. When $SO_2$ is adsorbed on c($2{\times}2$)_O/Ni(100) at 160 K, $SO_2$ reacts with oxygen to form $SO_3$ and trace amount of $SO_4$ species. $SO_3$ is adsorbed on this surface with its $C_3$ axis perpendicular to the surface. On a NiO(111)/Ni(100) surface, both $SO_3$ and $SO_4$ species are formed at 160 K from adsorbed $SO_2$.

Facile and Room Temperature Preparation and Characterization of PbS Nanoparticles in Aqueous [EMIM][EtSO4] Ionic Liquid Using Ultrasonic Irradiation

  • Behboudnia, M.;Habibi-Yangjeh, A.;Jafari-Tarzanag, Y.;Khodayari, A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.53-56
    • /
    • 2009
  • At room-temperature, a facile, seedless, and environmentally benign green route for the synthesis of star like PbS nanoclusters at 7 min in aqueous solution of 1-ethyl-3-methylimidazolium ethyl sulfate, [EMIM] [$EtSO_{4}$], room-temperature ionic liquid (RTIL), via ultrasonic irradiation is proposed. The X-ray diffraction studies display that the products are excellently crystallized in the form of cubic structure. An energy dispersive X-ray spectroscopy (EDX) investigation reveals the products are extremely pure. The absorption spectra of the product exhibit band gap energy of about 4.27 eV which shows an enormous blue shift of 3.86 eV that can be attributed to very small size of PbS nanoparticles produced and quantum confinement effect. A possible formation mechanism of the PbS nanoparticles using ultrasonic irradiation in aqueous solution of the RTIL is presented.

Adsorption of molecular oxygen and $SO_2$ on Ni(100)

  • Hyunsukl Jeong;Changmin;Kim, Eunha;Hojun Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.180-180
    • /
    • 1999
  • The interaction of oxygen with a Ni(100) surface has been investigated using X-ray Photoelectron Spectroscopy (XPS) and Near-Edge X-ray Absorption Fine Structure (NEXAFS) technique. Below 200L oxygen exposure, molecular oxygen was dissociated to atomic oxygen. Increasing oxygen exposure, -1s binding energy shifted from 531.0 eV to 533.0 eV due to molecular adsorption. The presence of molecular oxygen species was confirmed by NEXAFS. Molecular oxygen adsorbed on Ni(100) was oriented perpendicular to the surface. Upon heating over 150K molecular adsorbed oxygen surface was also analyzed using NEEXFS.

  • PDF