• 제목/요약/키워드: X-braced frame

검색결과 24건 처리시간 0.021초

Finite Element Modeling and Nonlinear Analysis for Seismic Assessment of Off-Diagonal Steel Braced RC Frame

  • Ramin, Keyvan;Fereidoonfar, Mitra
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권1호
    • /
    • pp.89-118
    • /
    • 2015
  • The geometric nonlinearity of off-diagonal bracing system (ODBS) could be a complementary system to covering and extending the nonlinearity of reinforced concrete material. Finite element modeling is performed for flexural frame, x-braced frame and the ODBS braced frame system at the initial phase. Then the different models are investigated along various analyses. According to the experimental results of flexural and x-braced frame, the verification is done. Analytical assessments are performed in according to three dimensional finite element modeling. Nonlinear static analysis is considered to obtain performance level and seismic behaviour, and then the response modification factors calculated from each model's pushover curve. In the next phase, the evaluation of cracks observed in the finite element models, especially for RC members of all three systems is performed. The finite element assessment is performed on engendered cracks in ODBS braced frame for various time steps. The nonlinear dynamic time history analysis accomplished in different stories models for three records of Elcentro, Naghan and Tabas earthquake accelerograms. Dynamic analysis is performed after scaling accelerogram on each type of flexural frame, x-braced frame and ODBS braced frame one by one. The base-point on RC frame is considered to investigate proportional displacement under each record. Hysteresis curves are assessed along continuing this study. The equivalent viscous damping for ODBS system is estimated in according to references. Results in each section show the ODBS system has an acceptable seismic behaviour and their conclusions have been converged when the ODBS system is utilized in reinforced concrete frame.

중앙부 거셋플레이트의 다층 X-형 가새골조 거동에 미치는 영향 (Effect of Mid-span Gusset Plates on the Behavior of Multi-Story X-Braced Frames)

  • 유정한
    • 한국강구조학회 논문집
    • /
    • 제25권2호
    • /
    • pp.179-186
    • /
    • 2013
  • 가새골조는 가장 경제적이고 효과적인 내진시스템 중 하나로써 자주 사용된다. 그러나 중앙부 거셋플레이트를 포함하는 다층 X-형 가새골조의 경우, 실무에서 뿐만 아니라 거동에 대한 연구도 드물다. 그 결과, 이 시스템의 내진 성능과 접합부 설계에 미치는 영향은 아직 잘 알려져 있지 않다. 이 영향을 파악하기 위해 선행해석연구가 수행됐고 이 선행연구는 실험체 제작 전에 수행되어 시스템 거동을 예측하고 효과적인 디자인을 위해 수행되었다. 선행연구 결과를 보면 중앙부(X 교차부) 거셋플레이트와 코너부 거셋플레이트의 거동이 상당히 다르다는 것을 알 수 있다. 선행연구의 결과로 결정된 실제크기의 2층 중심가새골조 실험체의 실험결과와 해석결과를 요약하였고 그 결과를 비교하였다.

Progressive collapse analysis of buildings with concentric and eccentric braced frames

  • Larijan, Reza Jalali;Nasserabadi, Heydar Dashti;Aghayan, Iman
    • Structural Engineering and Mechanics
    • /
    • 제61권6호
    • /
    • pp.755-763
    • /
    • 2017
  • In this study, the susceptibility of different symmetric steel buildings with dual frame system to Progressive Collapse (PC) was assessed. Some ten-story dual frame systems with different type of braced frames (concentrically and eccentrically braced frames) were considered. In addition, numbers and locations of braced bays were investigated (two and three braced bays in exterior frames) to quantitatively find out its effect on PC resistance. An Alternate Path Method (APM) with a linear static analysis was carried out based on General Services Administration (GSA 2003) guidelines. Maximum Demand Capacity Ratio (DCR) for the elements (beams and columns) with highest DCRs ($DCR_{moment}$ and $DCR_{shear}$) is given in tables. The results showed that the three braced bays with concentric braced frames especially X-braced and inverted V-braced frame systems had a lower susceptibility and greater resistance to PC. Also, the results represented that the beams were more critical than columns against PC after the removal of column.

Study on the effects of various mid-connections of x-brace on frame behavior

  • Hadianfard, Mohammad Ali;Hashemi, Ali;Gholami, Mohammad
    • Earthquakes and Structures
    • /
    • 제12권4호
    • /
    • pp.449-455
    • /
    • 2017
  • Using X-braced frames in steel structures is a current procedure to achieve good strength against lateral loads. Study on mid-connections of X-braces and their effects on frame behavior is a subject whose importance has been more or less disregarded by researchers. Experimentally inspecting models involves considerable expense and time; however, computer models can be more suitable substitutes. In this research, a numerical model of X-braced frame has been analyzed using finite element software. The results of pushover analysis of this frame are compared with those of the experimental test. With the help of computer model, the effects of different mid-connection details on ductility and lateral strength of the frame are inspected. Also performances of bolted and welded connections are compared. Taking into account ductility and strength, this study suggests details of a decent pattern for the mid-connection.

Seismic behavior of concentrically steel braced frames and their use in strengthening of reinforced concrete frames by external application

  • Unal, Alptug;Kaltakci, Mevlut Yasar
    • Steel and Composite Structures
    • /
    • 제21권4호
    • /
    • pp.687-702
    • /
    • 2016
  • There are many studies in the literature conducted on the subject of ensuring earthquake safety of reinforced concrete and steel structures using steel braced frames, but no detailed study concerning individual behavior of steel braced frames under earthquake loads and strengthening of reinforced concrete structures with out-of-plane steel braced frames has been encountered. In this study, in order to evaluate behaviors of "Concentrically Steel Braced Frames" types defined in TEC-2007 under lateral loads, dimensional analysis of Concentrically Steel Braced Frames designed with different scales and dimensions was conducted, the results were controlled according to TEC-2007, and after conducting static pushover analysis, behavior and load capacity of the Concentrically Steel Braced Frames and hinges sequence of the elements constituting the Concentrically Steel Braced Frames were tested. Concentrically Steel Braced Frames that were tested analytically consist of 2 storey and one bay, and are formed as two groups with the scales 1/2 and 1/3. In the study, Concentrically Steel Braced Frames described in TEC-2007 were designed, which are 7 types in total being non-braced, X-braced, V- braced, $\wedge$- braced, $\backslash$- braced, /- braced and K- braced. Furthermore, in order to verify accuracy of the analytic studies performed, the 1/2 scaled concentrically steel X-braced frame test element made up of box profiles and 1/3 scaled reinforced concrete frame with insufficient earthquake resistance were tested individually under lateral loads, and test results were compared with the results derived from analytic studies and interpreted. Similar results were obtained from both experimental studies and pushover analyses. According to pushover analysis results, load-carrying capacity of 1/3 scaled reinforced concrete frames increased up to 7,01 times as compared to the non-braced specimen upon strengthening. Results acquired from the study revealed that reinforced concrete buildings which have inadequate seismic capacity can be strengthened quickly, easily and economically by this method without evacuating them.

강골조 구조물의 내진 최적설계에 의한 브레이스 부재 배치에 관한 연구 (The Study on the Placements of Brace Members Using Optimum Seismic Design of Steel Frames)

  • 김기욱;박문호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제9권1호
    • /
    • pp.111-119
    • /
    • 2005
  • 본 연구는 지진하중을 고려한 브레이스된 강골조 구조물의 연속 및 이산화 최적설계에 관한 내용이다. 구조해석과 연속 및 이산화 최적설계를 동시에 수행할 수 있는 최적설계 프로그램을 개발하여 이를 브레이스가 없는 경우, Z-형(V), Z-형(역V), X-형(A), X-형(B), X-형(C), K-형 등의 다양한 브레이스 배치형태를 사용한 강골조 구조물에 적용하였고, 정하중, 지진하중을 고려하여 해석하였다. AISC-ASD 시방규정과 ATC-3-06에 규정한 사용성, 허용층간변위 및 다양한 제약조건을 모두 만족하는 최소중량, 설계변수 등을 도출하고, 다양한 예들의 해석결과를 비교 분석하여 내진에 적합한 브레이스 배치 형태를 제시하고자 하는데 그 목적이 있다.

Evaluation of performance of eccentric braced frame with friction damper

  • Vaseghi Amiri, J.;Navayinia, B.;Navaei, S.
    • Structural Engineering and Mechanics
    • /
    • 제39권5호
    • /
    • pp.717-732
    • /
    • 2011
  • Nonlinear dynamic analysis and evaluation of eccentric braced steel frames (EBF) equipped with friction damper (FD) is studied in this research. Previous studies about assessment of seismic performance of steel braced frame with FD have been generally limited to installing this device in confluence of cross in concentrically braced frame such chevron and x-bracing. Investigation is carried out with three types of steel frames namely 5, 10 and 15 storeys, representing the short, medium and high structures respectively in series of nonlinear dynamic analysis and 10 slip force values subjected to three different earthquake records. The proper place of FD, rather than providing them at all level is also studied in 15 storey frame. Four dimensionless indices namely roof displacement, base shear, dissipated energy and relative performance index (RPI) are determined in about 100 nonlinear dynamic analyses. Then average values of maximum roof displacement, base shear, energy dissipated and storey drift under three records for both EBF and EBF equipped with friction damper are obtained. The result indicates that FD reduces the response compared to EBF and is more efficient than EBF for taller storey frames.

Evaluation of seismic criteria of built-up special concentrically braced frames

  • Izadi, Amin;Aghakouchak, Ali A.
    • Steel and Composite Structures
    • /
    • 제29권1호
    • /
    • pp.23-37
    • /
    • 2018
  • In this paper, seismic provisions related to built-up special concentrically braced frames (BSCBFs) are investigated under cyclic loading using non-linear finite element analysis of a single-bay single-story frame. These braces, which contain double angle and double channel brace sections, are considered in two types of single diagonal and X-braced frames. The results of this study show that current seismic provisions such as observing the 0.4 ratio for slenderness ratio of individual elements between stitch connectors are conservative in BSCBFs, and can be increased according to the type of braces. Furthermore, such increments will lead to decreasing or remaining the current middle protected zone requirements of each BSCBFs. Failure results of BSCBFs, which are related to the plastic equivalent strain growth of members and ductility capacity of the models, show that the behaviors of double channel back-to-back diagonal braces are more desirable than those of similar face-to-face ones. Also, for double angle diagonal braces, results show that the failure of back-to-back BSCBFs occurs faster in comparison with face-to-face similar braces. In X-braced frames, cyclic and failure behaviors of built-up face-to-face models are more desirable than similar back-to-back braces in general.

Soft story retrofit of low-rise braced buildings by equivalent moment-resisting frames

  • Ebadi, Parviz;Maghsoudi, Ahmad;Mohamady, Hessam
    • Structural Engineering and Mechanics
    • /
    • 제68권5호
    • /
    • pp.621-632
    • /
    • 2018
  • Soft-story buildings have bottom stories much less rigid than the top stories and are susceptible to earthquake damage. Therefore, the seismic design specifications need strict design considerations in such cases. In this paper, a four-story building was investigated as a case study and the effects of X-braces elimination in its lower stories studied. In addition, the possibility of replacement of the X-braces in soft-stories with equivalent moment resisting frame inspected in two different phases. In first phase, the stiffness of X-braces and equivalent moment-resisting frames evaluated using classic equations. In final phase, diagonals removed from the lowest story to develop a soft-story and replaced with moment resisting frames. Then, the seismic stiffness variation of moment-resisting frame evaluated using nonlinear static and dynamic analyses. The results show that substitution of braced frames with an equivalent moment-resisting frame of the same stiffness increases story drift and reduces energy absorption capacity. However, it is enough to consider the needs of building codes, even using equivalent moment resisting frame instead of X-Braces, to avoid soft-story stiffness irregularity in seismic design of buildings. Besides, soft-story development in the second story may be more critical under strong ground excitations, because of interaction of adjacent stories.

Element loss analysis of concentrically braced frames considering structural performance criteria

  • Rezvani, Farshad Hashemi;Asgarian, Behrouz
    • Steel and Composite Structures
    • /
    • 제12권3호
    • /
    • pp.231-248
    • /
    • 2012
  • This research aims to investigate the structural behavior of concentrically braced frames after element loss by performing nonlinear static and dynamic analyses such as Time History Analysis (THA), Pushdown Analysis (PDA), Vertical Incremental Dynamic Analyses (VIDA) and Performance-Based Analysis (PBA). Such analyses are to assess the potential and capacity of this structural system for occurrence of progressive collapse. Besides, by determining the Failure Overload Factors (FOFs) and associated failure modes, it is possible to relate the results of various types of analysis in order to save the analysis time and effort. Analysis results showed that while VIDA and PBA according to FEMA 356 are mostly similar in detecting failure mode and FOFs, the Pushdown Overload Factors (PDOFs) differ from others at most to the rate of 23%. Furthermore, by sensitivity analysis it was observed that among the investigated structures, the eight-story frame had the most FOF. Finally, in this research the trend of FOF and the FOF to critical member capacity ratio for the plane split-X braced frames were introduced as a function of the number of frame stories.