• 제목/요약/키워드: X-band(8.2~12.4 GHz)

검색결과 34건 처리시간 0.026초

유연성 기판위에 스퍼터링법으로 제조한 CdS 박막의 전자파차폐 특성평가 (Flexible CdS Films for Selective control of Transmission of Electromagnetic Wave)

  • 허성기;조현진;정현준;안준구;윤순길
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.27-27
    • /
    • 2009
  • Non-stochiometric CdS:H films grown on polyethersulfon (PES) flexible polymer substrates at room temperature by R.F. sputtering technique. They exhibited a dark- and photo-sheet resistance of $2.7\times10^5$ and $\sim\;50\;{\Omega}$/square, respectively. These values were realized by an optimum control of both hydrogen doping-levels and the surface morphologies of the films. The comparison between the real and the simulated results for the shielding and the transmission by the free space measurement system in the X-band frequency range (8.2 - 12.4 GHz) was also addressed in this study. Samples overlapped with 13 layers of CdS:H/PES were consistent with the transmission results of pure aluminum metal films ($0.1\;{\Omega}$/square) deposited on PES substrates. As a result, by the simples tacking of the CdS:H/PES layers, the perfect control of the shielding and the transmission of the EM wave in the range of X-band frequency is possible by avisible light alone, and their results are especially very outstanding findings in the stealth function of the radome(Radar+Dome) such as aircrafts, ships, and missiles.

  • PDF

A Study on a Radar Absorbing Structure for Aircraft Leading Edge Application

  • Baek, Sang Min;Lee, Won Jun;Joo, Young Sik
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권2호
    • /
    • pp.215-221
    • /
    • 2017
  • An electromagnetic (EM) wave absorber reduces the possibility of radar detection by minimizing the radar cross section (RCS) of structures. In this study, a radar absorbing structure (RAS) was applied to the leading edge of a blended wing body aircraft to reduce RCS in X-band (8.2~12.4GHz) radar. The RAS was composed of a periodic pattern resistive sheet with conductive lossy material and glass-fiber/epoxy composite as a spacer. The applied RAS is a multifunctional composite structure which has both electromagnetic (EM) wave absorbing ability and load-bearing ability. A two dimensional unit absorber was designed first in a flat-plate shape, and then the fabricated leading edge structure incorporating the above RAS was investigated, using simulated and free-space measured reflection loss data from the flat-plate absorber. The leading edge was implemented on the aircraft, and its RCS was measured with respect to various azimuth angles in both polarizations (VV and HH). The RCS reduction effect of the RAS was evaluated in comparison with a leading edge of carbon fabric reinforced plastics (CFRP). The designed leading edge structure was examined through static structural analysis for various aircraft load cases to check structural integrity in terms of margin of safety. The mechanical and structural characteristics of CFRP, RAS and CFRP with RAM structures were also discussed in terms of their weight.

유리섬유/에폭시 복합재료 적층판의 유전성질 예측을 위한 적층판 법칙 (Laminating Rule for Predicting the Dielectric Properties of the E-glass/Epoxy Laminate Composite)

  • 진우석;이대길
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.141-145
    • /
    • 2005
  • Since the electromagnetic properties of fiber reinforced polymeric laminate composite can be tailored effectively by adjusting its composition and regulating the stacking sequence, it is plausible material for fabricating the radar absorbing structures (RAS) of desired performance. In order to design the effective electromagnetic wave (EM) absorber with the fiber reinforced polymeric laminate composite, its electromagnetic characteristics should be available and could be regulated easily in the target frequency bands. In this study, dielectric characteristics of the E-glass/epoxy laminate composites were measured by the free space method in the X-band frequency range ($8.2\;{\sim}\;12.4\;GHz$). In order to describe the dielectric behavior of laminate composites of arbitrary stacking sequences, the equivalent circuit model and the laminating equations for estimating dielectric properties were proposed, and experimentally verified. From the comparison of the predicted and measured data, the proposed method predicted well the experimentally measured data.

  • PDF

플라즈마 용사방식에 의해 형성된 페라이트-탄화규소 표면층의 마이크로파 흡수 특성(II) (Microwave Absorbing Characteristics of Ferrite-silicon carbide surface Films Produced)

  • 신동찬;손현
    • 한국통신학회논문지
    • /
    • 제18권8호
    • /
    • pp.1169-1175
    • /
    • 1993
  • 레이다의 추적 및 탐색으로 부터 비행 물체를 보호하기 위한 목적으로, 알루미늄 합금표면에 페라이트-탄화규소 복합물인 마이크로파 흡수층을 플라즈마 용사방식으로 제작하였다. 본 논문에서는 페라이트-탄화규소층(I) 제조시 사용했던 탄화규소 입자의 평균크기인 34[rm]대신에15[rm]가 사용되었으며, 플라즈마 용사변수들 중에서 분말의 공급비율은 70[Kg/h]대신에 50[Kg/h] 그리고, 용사거리는 80[mm[ 대신에 100[mm]가 사용 되었다. X-band(8~12.4(GHz)레이다용 페라이트-탄화규소 전자파 흡수체를 실험적으로 설계하고 시험제작하여 전기적 특성을 평가한 결과, -lOdB의 반사량을 허용한도로 했을 때 약 2.8%의 대역폭이 얻어졌으며, 최대 흡수두께는 0.5(mm)로 매우 양호한 박층형 전자파 흡수체가 얻어졌다.

  • PDF