• Title/Summary/Keyword: X-Ray structure

Search Result 3,687, Processing Time 0.033 seconds

Phase Analysis of Mechanically Alloyed $\sigma$-VFe Alloy Powders by Neutron and X-ray Diffraction (기계적 합금화한 $\sigma$-VFe합금의 중성자 및 X선 회절에 의한 상분석)

  • 이충효;조재문;이상진;심해섭;이창희
    • Korean Journal of Materials Research
    • /
    • v.11 no.8
    • /
    • pp.664-664
    • /
    • 2001
  • The mechanical alloying (MA) effect in $\sigma$-VFe intermetallic compound was studied by neutron and X-ray diffraction. The structure of MA $\sigma$-VFe powders were characterized by the X- ray diffraction with Cu- $K\alpha$ radiation and neutron diffraction with monochromatic neutrons of $1.835\AA$ using a high resolution powder diffractometer (HRPD). Mechanical alloying of $\sigma$-VFe compound gives rise to a dramatic structural change. After 60 hours of MA, the Fe-Fe distribution of the $\sigma$- phase VFe tetragonal structure with 30 atoms in a unit cell is found to change into that of the $\sigma$-(V,Fe) solid solution with bcc structure, which is a stable phase at elevated temperature above $1200^{\circ}C$. A comparison of X-ray diffraction data for the $\alpha$-phase has been also made with the corresponding neutron diffraction data. The (101) and (111) diffraction peaks of the $\sigma$-phase was clearly observed only in neutron diffraction pattern, which is believed to be a characteristic feature due to the chemical atomic ordering of $\sigma$- VFe phase.

Structure and $Ca^{2+}$-ion effects on the function of $\alpha$-cyclodextrin Glucanotransferase from B. macerans : An X-ray study (Bacillus macerans에서 정제한 $\alpha$-cyclooextrin glucanotransferase의 구조와 칼슘이온이 기능에 미치는 영향 : X-ray 연구)

  • 최희욱;홍순강
    • KSBB Journal
    • /
    • v.19 no.2
    • /
    • pp.159-163
    • /
    • 2004
  • The X-ray structure of the cydodextrin-glucanotransferase of Bacillus macerans was solved by molecular replacement at 2.0 ${\AA}$ resolution. The refined structure has a crystallographic R-factor of 16.6%, (R$\sub$free/ = 20.5%). A new metal binding site occupied by two Ca$\^$2+/-ions was found at an accession channel of the active site. There is a large accumulation of negative charges that bind these Ca$\^$2+/-ions, thereby connecting segment ${\beta}$13-${\alpha}$G (residue 254-276) to the main body of domain A (at ${\alpha}$H, residue 283-297). The segment 313-${\alpha}$G contains the catalytic residue Glu258 between subsite 1 and -1 and Tyr260 (subsite 2) which is located at the entrance of the active site. The Ca$\^$2+/-site 3a,b may have a major role for the activity and specificity of this CGTase, although it is not even conserved for the a-subclass of CGTases.

Layered Metal Hydroxides Containing Calcium and Their Structural Analysis

  • Kim, Tae-Hyun;Heo, Il;Paek, Seung-Min;Park, Chung-Berm;Choi, Ae-Jin;Lee, Sung-Han;Choy, Jin-Ho;Oh, Jae-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1845-1850
    • /
    • 2012
  • Layered metal hydroxides (LMHs) containing calcium were synthesized by coprecipitation in solution having two different trivalent metal ions, iron and aluminum. Two mixed metal solutions ($Ca^{2+}/Al^{3+}$ and $Ca^{2+}/Fe^{3+}$ = 2/1) were added to sodium hydroxide solution and the final pH was adjusted to ~11.5 and ~13 for CaAl-and CaFe-LMHs. Powder X-ray diffraction (XRD) for the two LMH samples showed well developed ($00l$) diffractions indicating 2-dimensional crystal structure of the synthesized LMHs. Rietveld refinement of the X-ray diffraction pattern, the local structure analysis through X-ray absorption spectroscopy, and thermal analysis also confirmed that the synthesized precipitates show typical structure of LMHs. The chemical formulae, $Ca_{2.04}Al_1(OH)_6(NO_3){\cdot}5.25H_2O$ and $Ca_{2.01}Fe_1(OH)_6(NO_3){\cdot}4.75H_2O$ were determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Particle morphology and thermal behavior for the synthesized LMHs were examined by field emission scanning electron microscopy and thermogravimetricdifferential scanning calorimetry.

A Study on the X-Ray Fractography of Turbine Blade under Fatigue Load (피로하중을 받는 터빈 블레이드의 X선 프랙토그래픽에 관한 연구)

  • Hong, Soon-Hyeok;Lee, Dong-Woo;Cho, Seok-Swoo;Joo, Won-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.65-71
    • /
    • 2002
  • Turbine blade is subject to cyclic bending force by steam pressure. Stress analysis by fractography is already established technology as means far seeking cause of fracture and has been widely employed. In the X-ray frctography, plastic deformation and residual stress near the fracture surface can be determined and information of internal structure of material can be obtained. Therefore, to find a fracture mechanism of torsion-mounted blade in nuclear power plant, based on the information from the fracture surface obtained by fatigue test, the correlation of X-ray parameter and fracture mechanics parameter was determined and then the stress intensity factor to actual broken turbine blade was predicted.

DETECTION OF X-RAY EMISSION FROM GALAXIES INSIDE AND TOWARDS THE NEARBY VOIDS

  • KIM CHULHEE;BOLLER TH.;GHOSH KAJAL K.
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • We searched for X-ray emission from the 665 galaxies inside and towards the nearby voids by analyzing the ROSAT All-Sky Survey (RASS) data as well as the ROSAT pointed observations (PSPC). As a result we have detected six X-ray emitting galaxies. Two (UGC 10205 and NGC 7509) are in the high density region in the local void, three (UGC 749, MCG +11-10-073, and Mrk 464) are towards the nearby voids, and UGC 32 is located in the low density region. We carried out a timing analysis for both Mrk 464 and UGC 32, and a spectral analysis for Mrk 464. The light curve of Mrk 464 shows the possibility of periodic X-ray flux variation and UGC 32 shows weak, but rapid variation.

Advanced Nanoscale Characterization of Cement Based Materials Using X-Ray Synchrotron Radiation: A Review

  • Chae, Sejung R.;Moon, Juhyuk;Yoon, Seyoon;Bae, Sungchul;Levitz, Pierre;Winarski, Robert;Monteiro, Paulo J.M.
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.2
    • /
    • pp.95-110
    • /
    • 2013
  • We report various synchrotron radiation laboratory based techniques used to characterize cement based materials in nanometer scale. High resolution X-ray transmission imaging combined with a rotational axis allows for rendering of samples in three dimensions revealing volumetric details. Scanning transmission X-ray microscope combines high spatial resolution imaging with high spectral resolution of the incident beam to reveal X-ray absorption near edge structure variations in the material nanostructure. Microdiffraction scans the surface of a sample to map its high order reflection or crystallographic variations with a micron-sized incident beam. High pressure X-ray diffraction measures compressibility of pure phase materials. Unique results of studies using the above tools are discussed-a study of pores, connectivity, and morphology of a 2,000 year old concrete using nanotomography; detection of localized and varying silicate chain depolymerization in Al-substituted tobermorite, and quantification of monosulfate distribution in tricalcium aluminate hydration using scanning transmission X-ray microscopy; detection and mapping of hydration products in high volume fly ash paste using microdiffraction; and determination of mechanical properties of various AFm phases using high pressure X-ray diffraction.