• 제목/요약/키워드: X-Ray Tomography

검색결과 804건 처리시간 0.032초

Clinical Comparison of the Predictive Value of the Simple Skull X-Ray and 3 Dimensional Computed Tomography for Skull Fractures of Children

  • Kim, Young-Im;Cheong, Jong-Woo;Yoon, Soo Han
    • Journal of Korean Neurosurgical Society
    • /
    • 제52권6호
    • /
    • pp.528-533
    • /
    • 2012
  • Objective : In the pediatric population the skull has not yet undergone ossification and it is assumed that the diagnostic rate of skull fractures by simple X-rays are lower than that of adults. It has been recently proposed that the diagnostic rates of skull fractures by 3-dimensional computer tomography (3D-CT) are higher than simple X-rays. The authors therefore attempted to compare the diagnostic rates of pediatric skull fractures by simple X-rays and 3D-CTs with respect to the type of fracture. Methods : One-hundred patients aged less than 12 years who visited the Emergency Center for cranial injury were subject to simple X-rays and 3D-CTs. The type and location of the fractures were compared and Kappa statistical analysis and the t-test were conducted. Results : Among the 100 pediatric patients, 65 were male and 35 were female. The mean age was $50{\pm}45$ months. 63 patients had simple skull fractures and 22 had complex fractures, and the types of fractures were linear fractures in 74, diastatic fractures 15, depressed fractures in 10, penetrating fracture in 1, and greenstick fractures in 3 patients. Statistical difference was observed for the predictive value of simple skull fractures' diagnostic rate depending on the method for diagnosis. A significant difference of the Kappa value was noted in the diagnosis of depressed skull fractures and diastatic skull fractures. Conclusion : In the majority of pediatric skull fractures, 3D-CT showed superior diagnosis rates compared to simple skull X-rays and therefore 3D-CT is recommended whenever skull fractures are suspected. This is especially true for depressed skull fractures and diastatic skull fractures.

Identification and Three-Dimensional Characterization of Micropore Networks Developed in Granite using Micro-Focus X-ray CT

  • Choo, Chang-Oh;Takahashi, Manabu;Jeong, Gyo-Cheol
    • 지질공학
    • /
    • 제24권2호
    • /
    • pp.179-189
    • /
    • 2014
  • We analyzed the three-dimensional distribution of micropores and internal structures in both fresh and weathered granite using micro-focus X-ray computed tomography (micro-CT). Results show that the pore radius in fresh granite is mostly in the range of $17-50{\mu}m$, the throat radius is in the range of $5-25{\mu}m$, and the coordination number (CN) of pores is less than 10. In contrast, the pore radius in weathered granite is mostly in the range of $20-80{\mu}m$, the throat radius is in the range of $8-30{\mu}m$, and the CN is less than 12. In general, a positive linear relationship exists between pore radius and CN. In addition, both the size and the density of pores increase with an increasing degree of rock weathering. The size of the throats that connect the pores also increases with an increasing degree of weathering, which induces fracture propagation in rocks. Micro-CT is a powerful and versatile approach for investigating the three-dimensional distributions of pores and fracture structures in rocks, and for quantitatively assessing the degree of pore connectivity.

Center Determination for Cone-Beam X-ray Tomography

  • Narkbuakaew, W.;Ngamanekrat, S.;Withayachumnankul, W.;Pintavirooj, C.;Sangworasil, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1885-1888
    • /
    • 2004
  • In order to render 3D model of the bone, the stack of cross-sectional images must be reconstructed from a series of X-ray radiographs, served as the projections. In the case where the distance between x-ray source and detector is not infinite, image reconstruction from projection based on parallel-beam geometry provides an error in the cross-sectional image. In such case, image reconstruction from projection based on conebeam geometry must be exercised instead. This paper is devoted to the determination of detector center for SART conebeam Technique which is critically effect the performance of the resulting 3D modeling.

  • PDF

응급 다발성 외상환자의 기본적 방사선 촬영부위에 관한 조사연구 (The Retrospective Study of Essential X-ray in Emergency Multiple Trauma Patients)

  • 유병규
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제19권2호
    • /
    • pp.51-57
    • /
    • 1996
  • Radiography should be used judiciously and should not delay patients resuscitation. In the patient with emergency multiple trauma, three radiography should be obtained-cervical spine, anteroposterior(AP) chest, and AP pelvis. These examinations can be done in the resuscitation area, usually with a portable X-ray unit, but should not interrupt the resuscitation process. A retrospective study was carried on 157 emergency multiple trauma patients who were admitted to Yong Dong Severance Hospital from January, to December in 1995. I analyzed the types of X-ray examinations in emergency multiple trauma patients, and classified the patients by disoriented group of mentality. The results were as follows: 1. The subjects were 7.1%(157patients) of 2,208 trauma patients(7.3%) in total 30,085 emergency patients. 2. Male to female ratio was 2.57 : 1. The age distribution was highest from 31 years to 40 years(28.0% ). 3. The peak time of patient's entrance in emergency center was between 8 : 00 pm and 2 : 00 am(36.9%), and second peak time was between 2 : 00 pm and 8 : 00 pm (29.3%). 4. According to the injury type, traffic accident, motorcycle accident and falling down were 71.3%, 8.3% and 20.4% respectively. 5. According to the exposure rate of Computed Tomography, chest CT, cervical CT pelvis CT and brain CT were 39.5%, 24.2%, 69.4% and 51.6% respectively.

  • PDF

방사광 경 엑스선 마이크로 단층촬영을 이용한 거머리의 해부학적 3차원 구조분석 (A Study of the 3D Anatomical Structure Analysis of Leech Using Hard X-ray Micro Tomography by Synchrotron Radiation)

  • 이지원;이언석
    • 한국콘텐츠학회논문지
    • /
    • 제16권12호
    • /
    • pp.70-77
    • /
    • 2016
  • 본 연구에서는 거머리의 미세한 해부구조를 3차원적으로 분석 가능한 방사광의 경 엑스선 이미징을 통하여 객관적 분석법 및 생체모사기술 구축을 위한 기초자료를 구축하고자 하였다. 우리는 방사광을 이용하여 거머리의 미세 구조영상을 얻을 수 있었고, 3차원적인 해부학적 분석이 가능함을 확인하였다. 또한 방사광을 통해 얻은 데이터는 내부구조의 미세조직까지 관찰 가능하기 때문에 성분 분석 및 생리적, 기능적 측면으로도 연구의 토대가 될 것으로 사료된다. 더 나아가 추후 거머리로부터 생체모사기술 연구 분야 등에 기여할 수 있을 것이라 기대된다.

GeSbSe계 기반 8~12 ㎛ 파장대역 적외선 광학 렌즈 제작 및 비구면 렌즈 가공기술 개발 (Material Properties of GeSbSe Chalcogenide Glass and Fabrication Process for 8~12 ㎛ IR Region Aspherical Optical Lens)

  • 배동식;여종빈;한상현;이현용
    • 한국전기전자재료학회논문지
    • /
    • 제26권3호
    • /
    • pp.183-189
    • /
    • 2013
  • The chalcogenide glass has superior optical properties in IR region transmittances. We have determined the composition of GeSbSe chalcogenide glass for the application of good IR lenses, resulting in the composite rate of $Ge_{19}Sb_{23}Se_{58}$. The optical, structural, thermal and physical properties were measured by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Differential scanning calorimeter (DSC), X-ray computed tomography (X-ray CT) respectively. The fabrication of the chalcogenide glass lens for infrared optics applications was proposed using a diamond turning machining technology which is known as the suitable ways for the production cost reduction and the accurate fabrication process control.

APPLICATION OF A DUAL-ENERGY MONOCHROMATIC XRAY CT ALGORITHM TO POLYCHROMATIC X-RAY CT: A FEASIBILITY STUDY

  • Chang, S.;Lee, H.K.;Cho, G.
    • Nuclear Engineering and Technology
    • /
    • 제44권1호
    • /
    • pp.61-70
    • /
    • 2012
  • In this study, a simple post-reconstruction dual-energy computed tomography (CT) method is proposed. A dual-energy CT algorithm for monochromatic x-rays was adopted and applied to the dual-energy CT of polychromatic x-rays by assigning a representative mono-energy. The accuracy of algorithm implementation was tested with mathematical phantoms. To test the sensitivity of this algorithm to the inaccuracy of representative energy value in energy values, a simulation study was performed with mathematical phantom. To represent a polychromatic x-ray energy spectrum with a single-energy, mean energy and equivalent energy were used, and the results were compared. The feasibility of the proposed method was experimentally tested with two different micro-CTs and a test phantom made of polymethyl methacrylate (PMMA), water, and graphite. The dual-energy calculations were carried out with CT images of all possible energy pairs among 40, 50, 60, 70, and 80 kVp. The effective atomic number and the electron density values obtained from the proposed method were compared with theoretical values. The results showed that, except the errors in the effective atomic number of graphite, most of the errors were less than 10 % for both CT scanners, and for the combination of 60 kVp and 70 kVp, errors less than 6.0 % could be achieved with a Polaris 90 CT. The proposed method shows simplicity of calibration, demonstrating its practicality and feasibility for use with a general polychromatic CT.

Three-dimensional imaging modalities in endodontics

  • Mao, Teresa;Neelakantan, Prasanna
    • Imaging Science in Dentistry
    • /
    • 제44권3호
    • /
    • pp.177-183
    • /
    • 2014
  • Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of periradicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome.

Preclinical Prototype Development of a Microwave Tomography System for Breast Cancer Detection

  • Son, Seong-Ho;Simonov, Nikolai;Kim, Hyuk-Je;Lee, Jong-Moon;Jeon, Soon-Ik
    • ETRI Journal
    • /
    • 제32권6호
    • /
    • pp.901-910
    • /
    • 2010
  • As a supplement to X-ray mammography, microwave imaging is a new and promising technique for breast cancer detection. Through solving the nonlinear inverse scattering problem, microwave tomography (MT) creates images from measured signals using antennas. In this paper, we describe a developed MT system and an iterative Gauss-Newton algorithm. At each iteration, this algorithm determines the updated values by solving the set of normal equations using Tikhonov regularization. Some examples of successful image reconstruction are presented.

개인용 컴퓨터를 이용한 뇌 합성영상에 대한 재구성

  • 민형기;남상희
    • 대한디지털의료영상학회논문지
    • /
    • 제3권1호
    • /
    • pp.110-118
    • /
    • 1997
  • Recently, to make a diagnosis of the patient different X-Ray examinations are used. To name a few, Computed Tomography(CT). Magnetic Resonance Image(MRI) Single Photon Emission Computed Tomography(SPET) and Positron Emission Tomography(PET). But diagnosticians face difficulties sometimes when they make a diagnosis with images from those examinations. One of the problem is whether the Lesions of the patient is captured in the image correctly. Another one is whether the images are taken with same angle. in this paper, a study 9 on the method to obtain the hybrid image from the different images to different examinations. The procedure done in this paper is described as future study. Although small errors in position between images would occurred, this method more useful as it does not make patients in convenient. To reconstruct a image, some images are scanned by scanner and stored to personal computer for further image processing with Aldus photostyler program. The method to generate a sharpened image are also described.

  • PDF