• Title/Summary/Keyword: X-Ray Spectrometer

Search Result 475, Processing Time 0.044 seconds

Friction and Wear Properties of Plasma-sprayed Cr2O3-MoO3 Composite Coatings at High Temperature (MoO3가 첨가된 Cr2O3 플라즈마 용사코팅의 고온 마찰 마멸 특성)

  • Lyo, In-Woong;Ahn, Hyo-Sok;Lim, Dae-Soon
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.9
    • /
    • pp.851-856
    • /
    • 2002
  • Tribological behavior of plasma-sprayed $Cr_2O_3$-based coatings containing $MoO_3$ at 450$^{\circ}C$ was investigated to understand the influence of $MoO_3$. A reciprocal disc-on-plate type tribo-tester was employed to examine fricition and wear behavior of the specimens. The microstructure and phase composition of the coating was characterized with Transmission Electron Microscopy(TEM). The TEM analysis indicated that $MoO_3$ was dispersed into the grain boundary, resulting in the increase of the hardness and density of the coating. Worn surfaces were investigated by scanning electron microscopy and chemistry of the worn surfaces was analyzed using a X-ray Photoelectron Spectrometer(XPS). The results showed that the friction coefficient of the $MoO_3$-added coatings was lower than that without $MoO_3$ addition. The larger protecting layers were observed at the worn surface of plasma spray coated specimens with $MoO_3$ composition in the protecting layer appears to be more favorable in reducing the friction.

Conservation and Analysis of Wall Painting Fragments of Goguryeo Possessed by National Museum of Korea (국립중앙박물관 소장 고구려 벽화 편의 보존과 분석)

  • Jo, Yeontae
    • Conservation Science in Museum
    • /
    • v.14
    • /
    • pp.37-60
    • /
    • 2013
  • Conservation and analysis of wall painting Goguryeo was performed to classify the unknown fragments. The conservation naked eye observation, optical microscopy, and infrared examination were carried out in order to figure out the structure, quality of constituting materials, and damages such as cracks, and discolored fragments of colored areas. Based on such investigation, conservation was proceeded. and it was completed with strengthening the weakened pigment layer of wall blocks. In addition tombs where the wall painting fragments were excavated were investigated by making comparison with gelatin dry plates and copies possessed by National Museum of Korea. According to the result, they were Kaemachong, Gosan-ri Tomb No.1 Gamsinchong, and Wonbong-ri Tomb. The components of colors with which Goguryeo wall painting fragments were painted and the mineral pigments of the wall layer were analyzed. Portable µ-XRF spectrometer and X-ray diffractometer were employed. It showed that lime (CaCO3) used for the wall layer, and the brown color is hematite(Fe2O3) and cerusite (PbCO3) and lead oxide(PbO) were identified. In the red color, cinnabar (HgS) were detected.

Characteristics and Preparation of Calcium Acetate from Butter Clam (Saxidomus purpuratus) Shell Powder by Response Surface Methodology (반응표면분석법을 이용한 개조개(Saxidomus purpuratus) 패각분말로부터 가용성 초산칼슘의 제조 및 특성)

  • Lee, Hyun Ji;Jung, Nam Young;Park, Sung Hwan;Song, Sang Mok;Kang, Sang In;Kim, Jin-Soo;Heu, Min Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.6
    • /
    • pp.888-895
    • /
    • 2015
  • For effective utilization of butter clam shell as a natural calcium resource, the optimal conditions for preparation of calcium acetate (BCCA) with high solubility were determined using response surface methodology (RSM). The polynomial models developed by RSM for pH, solubility, and yield were highly effective in describing the relationships between factors (P<0.05). Increased molar ratio of calcined powder (BCCP) from butter clam shell led to reduction of solubility, yield, color values, and overall quality. Critical values of multiple response optimization to independent variables were 2.70 M and 1.05 M for acetic acid and BCCP, respectively. The actual values (pH 7.04, 93.0% for solubility and 267.5% for yield) under optimization conditions were similar to predicted values. White indices of BCCAs were in the range of 89.7~93.3. Therefore, color value was improved by calcination and organic acid treatment. Buffering capacity of BCCAs was strong at pH 4.88 to 4.92 upon addition of ~2 mL of 1 N HCl. Calcium content and solubility of BCCAs were 20.7~22.8 g/100 g and 97.2~99.6%, respectively. The patterns of fourier transform infrared spectrometer and X-ray diffractometer analyses from BCCA were identified as calcium acetate monohydrate, and microstructure by field emission scanning electron microscope showed an irregular form.

Feasibility Study of Different Biochars as Adsorbent for Cadmium and Lead

  • Kim, In Ja;Kim, Rog-Young;Kim, Ji In;Kim, Hyoung Seop;Noh, Hoe-Jung;Kim, Tae Seung;Yoon, Jeong-Ki;Park, Gyoung-Hun;Ok, Yong Sik;Jung, Hyun-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.332-339
    • /
    • 2015
  • The objective of this study was to evaluate the effectiveness of different biochars on the removal of heavy metals from aqueous media. The experiment was carried out in aqueous solutions containing $200mg\;CdL^{-1}$ or $200mg\;PbL^{-1}$ using two different biochars derived from soybean stover and orange peel (20 mg Cd or $Pbg^{-1}$ biochar). After shaking for 24 hours, biochars were filtered out, and Cd and Pb in the filtrate were analyzed by flame atomic absorption spectrophotometer (FAAS). In order to provide information regarding metal binding strength on biochars, sequential extraction was performed by modified SM&T (formerly BCR). The results showed that 70~100% of initially added Cd and Pb was adsorbed on biochars and removed from aqueous solution. The removal rate of Pb (95%, 100%) was higher than that of Cd (70%, 91%). In the case of Cd, orange peel derived biochar (91%) showed higher adsorption rate than soybean stover derived biochar (70%). Cd was adsorbed on the biochar mainly in exchangeable and carbonates fraction (1st phase). In contrast, Pb was adsorbed on it mainly in the form of Fe-Mn oxides and residual fraction (2nd and 4th phase). The existence of Cd and Pb as a form of surface-precipitated complex was also observed on the surfaces of biochars detected by field emission scanning electron microscope (FESEM) and energy dispersive X-ray spectrometer (EDAX).

Effect of Hollow Sphere Size on Heat Shield Properties of hollow TiO2/polyacrylate Composites (중공구의 크기에 의한 hollow TiO2/polyacrylate 복합체의 열차단 특성)

  • Kim, Jong Seok
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.690-694
    • /
    • 2021
  • Carbon spheres (CS) were fabricated using glucose as a precursor in the hydrothermal method. Hollow TiO2 (H-TiO2) spheres with 200 nm, 500 nm, and 1,200 nm were synthesized by CS/TiO2 core-shell particles via a sol-gel and calcination method. H-TiO2 spheres with nano and micron sizes were characterized using FE-SEM, HR-TEM, and X-ray diffraction. The CIE color coordinate, solar reflectance, and heat shield temperatures of H-TiO2/polyacrylate (PA) composite film were investigated using a UV-Vis-NIR spectrometer and homemade heat insulation temperature measuring device. H-TiO2/PA composites exhibit excellent thermal insulation since the hollow structure filled with dry air has low thermal conductivity and near infrared light reflecting performance. The thermal insulation increased with increasing the hollow sphere (HS) size on H-TiO2/PA composites. The PA composite film mixed with H-TiO2 filled with 1200 nm HS reduced the heat shield temperature by 26 ℃ compared to that of the transparent glass counterpart.

A Study on the Modification of NH4+Y-zeolite for Improving Adsorption/Desorption Performance of Benzene (NH4+Y-zeolite의 개질을 통한 벤젠 흡·탈착 성능 증진 연구)

  • Jang, Young Hee;Noh, Young Il;Lee, Sang Moon;Kim, Sung Su
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.33-39
    • /
    • 2019
  • A.C (activated carbon) is mainly used to remove VOCs (volatile organic compounds), however, it has many problems such as fire risk due to increasing of adsorbent surface temperature during VOCs ad/desorption, increased cost by frequent replacement cycles requirement and performance degradation when containing moisture. In order to solve these problems, many researches, hydrophobic zeolite adsorbents, have been reported. In this study, $NH_4{^+}Y$-zeolite was synthesized with Y-zeolite through steam treatment and acid treatment, which is one of the hydrophobic modification methods, to secure high surface area, thermal stability and humidity resistance. The Y, Y-550-HN, Y-600-HN and Y-650-HN had adsorption capacities of $23mg\;g^{-1}$, $38mg\;g^{-1}$, $77mg\;g^{-1}$, $61mg\;g^{-1}$. The change of Si/Al ratio, which is an index to confirm the degree of modification, was confirmed by XRF (X-ray fluorescence spectrometer) analysis. As a result, the adsorbtion performance was improved when Y-zeolite modified, and the Si/Al ratio of Y, Y-550-HN, Y-600-HN, Y-650-HN were increased to 3.1765, 6.6706, 7.3079, and 7.4635, respectively. Whereas it was confirmed that structural crystallization due to high heat treatment temperature affected performance degradation. Therefore, there is an optimal heat treatment temperature of Y-zeolite, optimum modification condition study could be a substitute for activated carbon as a condition for producing an adsorbent having high durability and stability.

Evaluation of Shielding Performance of 3D Printer Materials for High-energy Electron Radiation Therapy (고 에너지 전자선 치료를 위한 3D 프린터 물질의 차폐 성능평가)

  • Chang-Woo, Oh;Sang-Il, Bae;Young-Min, Moon;Hyun-Kyoung, Yang
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.687-695
    • /
    • 2022
  • To find a 3D printer material that can replace lead used as a shield for high-energy electron beam treatment, the shielding composites were simulated by using MCNP6 programs. The Percent Depth Dose (PDD), Flatness, and Symmetry of linear accelerators emitting high-energy electron beams were measured, and the linear accelerator was compared with MCNP6 after simulation, confirming that the source term between the actual measurement and simulation was consistent. By simulating the lead shield, the appropriate thickness of the lead shield capable of shielding 95% or more of the absorbed dose was selected. Based on the absorption dose data for lead shield with a thickness of 3 mm, the shielding performance was analyzed by simulating 1, 5, 10, and 15 mm thicknesses of ABS+W (10%), ABS+Bi (10%), and PLA+Fe (10%). Each prototype was manufactured with a 3D printer, measured and analyzed under the same conditions as in the simulation, and found that when ABS+W (10%) material was formed to have a thickness of at least 10mm, it had a shielding performance that could replace lead with a thickness of 3mm. The surface morphology and atomic composition of the ABS+W (10%) material were evaluated using a scanning electron microscope (SEM) and an energy dispersive X-ray spectrometer (EDS). From these results, it was confirmed that replacing the commercialized lead shield with ABS+W (10%) material not only produces a shielding effect such as lead, but also can be customized to patients using a 3D printer, which can be very useful for high-energy electron beam treatment.

GPU Based Feature Profile Simulation for Deep Contact Hole Etching in Fluorocarbon Plasma

  • Im, Yeon-Ho;Chang, Won-Seok;Choi, Kwang-Sung;Yu, Dong-Hun;Cho, Deog-Gyun;Yook, Yeong-Geun;Chun, Poo-Reum;Lee, Se-A;Kim, Jin-Tae;Kwon, Deuk-Chul;Yoon, Jung-Sik;Kim3, Dae-Woong;You, Shin-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.80-81
    • /
    • 2012
  • Recently, one of the critical issues in the etching processes of the nanoscale devices is to achieve ultra-high aspect ratio contact (UHARC) profile without anomalous behaviors such as sidewall bowing, and twisting profile. To achieve this goal, the fluorocarbon plasmas with major advantage of the sidewall passivation have been used commonly with numerous additives to obtain the ideal etch profiles. However, they still suffer from formidable challenges such as tight limits of sidewall bowing and controlling the randomly distorted features in nanoscale etching profile. Furthermore, the absence of the available plasma simulation tools has made it difficult to develop revolutionary technologies to overcome these process limitations, including novel plasma chemistries, and plasma sources. As an effort to address these issues, we performed a fluorocarbon surface kinetic modeling based on the experimental plasma diagnostic data for silicon dioxide etching process under inductively coupled C4F6/Ar/O2 plasmas. For this work, the SiO2 etch rates were investigated with bulk plasma diagnostics tools such as Langmuir probe, cutoff probe and Quadruple Mass Spectrometer (QMS). The surface chemistries of the etched samples were measured by X-ray Photoelectron Spectrometer. To measure plasma parameters, the self-cleaned RF Langmuir probe was used for polymer deposition environment on the probe tip and double-checked by the cutoff probe which was known to be a precise plasma diagnostic tool for the electron density measurement. In addition, neutral and ion fluxes from bulk plasma were monitored with appearance methods using QMS signal. Based on these experimental data, we proposed a phenomenological, and realistic two-layer surface reaction model of SiO2 etch process under the overlying polymer passivation layer, considering material balance of deposition and etching through steady-state fluorocarbon layer. The predicted surface reaction modeling results showed good agreement with the experimental data. With the above studies of plasma surface reaction, we have developed a 3D topography simulator using the multi-layer level set algorithm and new memory saving technique, which is suitable in 3D UHARC etch simulation. Ballistic transports of neutral and ion species inside feature profile was considered by deterministic and Monte Carlo methods, respectively. In case of ultra-high aspect ratio contact hole etching, it is already well-known that the huge computational burden is required for realistic consideration of these ballistic transports. To address this issue, the related computational codes were efficiently parallelized for GPU (Graphic Processing Unit) computing, so that the total computation time could be improved more than few hundred times compared to the serial version. Finally, the 3D topography simulator was integrated with ballistic transport module and etch reaction model. Realistic etch-profile simulations with consideration of the sidewall polymer passivation layer were demonstrated.

  • PDF

CO2 Sequestration and Utilization of Calcium-extracted Slag Using Air-cooled Blast Furnace Slag and Convert Slag (괴재 및 전로슬래그를 이용한 CO2 저감 및 칼슘 추출 후 슬래그 활용)

  • Yoo, Yeongsuk;Choi, Hongbeom;Bang, Jun-Hwan;Chae, Soochun;Kim, Ji-Whan;Kim, Jin-Man;Lee, Seung-Woo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.101-111
    • /
    • 2017
  • Mineral carbonation is a technology in which carbonates are synthesized from minerals including serpentine and olivine, and industrial wastes such as slag and cement, of which all contain calcium or magnesium when reacted with carbon dioxide. This study aims to develop the mineral carbonation technology for commercialization, which can reduce environmental burden and process cost through the reduction of carbon dioxide using steel slag and the slag reuse after calcium extraction. Calcium extraction was conducted using NH4Cl solution for air-cooled slag and convert slag, and ${\geq}98%$ purity calcium carbonate was synthesized by reaction with calcium-extracted solution and carbon dioxide. And we conducted experimentally to minimize the quantity of by-product, the slag residue after calcium extraction, which has occupied large amount of weight ratio (about 80-90%) at the point of mineral carbonation process using slag. The slag residue was used to replace silica sand in the manufacture of cement panel, and physical properties including compressive strength and flexible strength of panel using the slag residue and normal cement panel, respectively, were analyzed. The calcium concentration in extraction solution was analyzed by inductively coupled plasma optical emission spectrometer (ICP-OES). Field-emission scanning electron microscope (FE-SEM) was also used to identify the surface morphology of calcium carbonate, and XRD was used to analyze the crystallinity and the quantitative analysis of calcium carbonate. In addition, the cement panel evaluation was carried out according to KS L ISO 679, and the compressive strength and flexural strength of the panels were measured.

The Antimicrobial Effect of Water Soluble Chitosan (수용성 키토산의 항균효과)

  • Jung, Byung-Ok;Lee, Young-Moo;Kim, Jae-Jin;Choi, Young-Ju;Jung, Kyung-Ja;Kim, Je-Jung;Chung, Suk-Jin
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.660-665
    • /
    • 1999
  • Structure of water soluble chitosan (WSC) was confirmed by Fourier transform infrared spectrometer (FT-IR), X-ray diffractometer and thermal analyser. The viscosity average molecular weight of WSC ranged from $3.0{\times}10^{4}$ to $4.5{\times}10^{4}$. Using the WSC having viscosity average molecular weight of $3.0{\times}10^{4}$, the antimicrobacterial effects against microorganism and oral microorganism showed 81.7% and 80.6% for Staphyloccus aureus and Bacillus subtilis, respectively, while the anitmicrobacterial effect exhibited 100% and 73.8% against Streptococcus mutans and Streptococcus sanguis, respectively. Therefore it is concluded that WSC is more effective against oral microorganism that microorganism in terms of antimicrobacterial effects. WSC sample with the viscosity average molecular weight of $4.5{\times}10^{4}$ exhibited a half of the antimicrobacterial effect of the low MW sample, indicating that the WSC with low MW was better than that with high MW. Chitin and chitosan showed a drastic decrease of acidity from pH 7.0 to 4.9 after 8 minute incubation time and reached an equilibrium after that. WSC, however, restrained pH of the sample from lowering up to about 16 minutes of incubation and reached an equilibrium after that. WSC obviously showed a buffering effect against pH change.

  • PDF