• Title/Summary/Keyword: X-Ray Solar Flares

Search Result 37, Processing Time 0.027 seconds

Moreton Wave and EUV Wave Associated with the 2010 February 7 and 2010 August 18 Flares

  • Asai, Ayumi;Isobe, Hiroaki;Takasao, Shinsuke;Shibata, Kazunari
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.83.1-83.1
    • /
    • 2011
  • Solar flares are very spectacular, and are associated with various phenomena. Coronal shocks or disturbances are one of such flare-related phenomena. Although Moreton waves and X-ray waves are well explained with MHD first mode shocks propagating in the corona, there still remains a big problem on the nature of the waves, since they are very rare phenomena. On the other hand, EIT waves (or EUV waves) have been paid attention to as another phenomenon of coronal disturbances. However, the physical features (velocity, opening angle, and so on) are much different from those for Moreton waves and X-ray waves. We report detailed features of the coronal disturbances associated with the 2010 February 7 and the 2010 August 18 flares. For the former flare we analyzed the H-alpha images obtained by SMART at Hida Observatory, Kyoto University, Japan and by a flare telescope at National Astronomical Observatory of Japan, the X-rays images taken by Hinode/XRT, and the EUV images obtained by the both satellites of STEREO, and found the Moreton wave, X-ray wave, and EIT wave, simultaneously. In the latter flare, on the other hand, we observed a very fast EUV wave in EUV images taken by SDO/AIA. The propagating speed is comparable to the MHD first mode wave, while there is no obvious evidence of shocks for this flare. From these results, we discuss the nature of coronal disturbances.

  • PDF

GROUND LEVEL ENHANCEMENTS IN RELATION WITH ENERGETIC SOLAR FEATURES AND DISTURBANCES IN SOLAR WIND PLASMA PARAMETERS

  • VERMA, PYARE LAL
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.47-51
    • /
    • 2015
  • Ground Level Enhancements (GLEs) in cosmic ray intensity observed during the period of 1997-2012 have been studied with energetic solar features and disturbances in solar wind plasma parameters and it is seen that all the GLEs have been found to be associated with coronal mass ejections, hard X-ray solar flares and solar radio bursts. All the GLEs have also been found to be associated with sudden jumps in solar proton flux of energy of ${\geq}60Mev$. A positive correlation with correlation coefficient of 0.48 has been found between the maximum percentage intensity (Imax%) of Ground Level Enhancements and the peak value of solar proton flux of energy (${\geq}60Mev$). All the Ground Level Enhancements have been found to be associated with jumps in solar wind plasma velocity (JSWV) events. A positive correlation with correlation coefficient of 0.43 has been found between the maximum percentage intensity (Imax %) of Ground Level Enhancements and the peak value of solar wind plasma velocity of associated (JSWV) events. All the Ground Level Enhancements have been found to be associated with jumps in solar wind plasma pressure (JSWP) events. A positive correlation with correlation coefficient of 0.67 has been found between the maximum percentage intensity (Imax %) of Ground Level Enhancements and the peak value of solar wind plasma pressure of associated (JSWP) events and of 0.68 between the maximum percentage intensity (Imax %) of Ground Level Enhancements and the magnitude of the jump in solar wind plasma pressure of associated (JSWP) events.

STUDY OF FLARE-ASSOCIATED X-RAY PLASMA EJECTIONS : II. MORPHOLOGICAL CLASSIFICATION

  • KIM YEON-HAN;MOON Y.-J.;CHO K.-S.;BONG SU-CHAN;PARK Y.-D.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.171-177
    • /
    • 2004
  • X-ray plasma ejections often occurred around the impulsive phases of solar flares and have been well observed by the SXT aboard Yohkoh. Though the X-ray plasma ejections show various morphological shapes, there has been no attempt at classifying the morphological groups for a large sample of the X-ray plasma ejections. In this study, we have classified 137 X-ray plasma ejections according to their shape for the first time. Our classification criteria are as follows: (1) a loop type shows ejecting plasma with the shape of loops, (2) a spray type has a continuous stream of plasma without showing any typical shape, (3) a jet type shows collimated motions of plasma, (4) a confined ejection shows limited motions of plasma near a flaring site. As a result, we classified the flare-associated X-ray plasma ejections into five groups as follows: loop-type (60 events), spray-type (40 events), jet-type (11 events), confined ejection (18 events), and others (8 events). As an illustration, we presented time sequence images of several typical events to discuss their morphological characteristics, speed, CME association, and magnetic field configuration. We found that the jet-type events tend to have higher speeds and better association with CMEs than those of the loop-type events. It is also found that the CME association (11/11) of the jet-type events is much higher than that (5/18) of the confined ejections. These facts imply that the physical characteristics of the X-ray plasma ejections are closely associated with magnetic field configurations near the reconnection regions.

THE PREDICTION OF FLARE PRODUCTION USING SOLAR ACTIVITY DATA (태양활동 자료를 이용한 플레어 발생 예보)

  • Lee, Jin-Lee;Kim, Gap-Seong
    • Publications of The Korean Astronomical Society
    • /
    • v.11 no.1
    • /
    • pp.263-277
    • /
    • 1996
  • We have intensively carried out numerical calculations on flare predictions from the solar activity data for photospheric sunspots, chromospheric flare and plages, coronal X-ray intensities and 2800MHz radio fluxes, by using multilinear regression method. Intensities of solar flares for the next day have been predicted from the solar data between 1977-1982 and 1993-1996. Firstly, we have calculated flare predictions with the multilinear regression method, by using separate solar data in growth and decay phase of sunspot area and magnetic field strength from the whole data on solar activities. Secondly, the same operations as above have been made for the remaining data after removal of the data with large deviation from the mean calculated by the above prediction method. we have reached a conclusion that average hit ratio of correct predictions to total predictions of flares with class of M5 over has been as high as 70% for the first case and that of correct prediction number to total observation number has been shown as 61%.

  • PDF

Solar Flare and CME Occurrence Probability Depending on Sunspot Class and Its Area Change

  • Lee, Kangjin;Moon, Yong-Jae;Lee, Jin-Yi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.76.1-76.1
    • /
    • 2014
  • We investigate the solar flare and CME occurrence rate and probability depending on sunspot class and its area change. These CMEs are front-side, partial and full halo CMEs associated with X-ray flares. For this we use the Solar Region Summary(SRS) from NOAA, NGDC flare catalog, and SOHO/LASCO CME catalog for 16 years (from January 1996 to December 2011). We classify each sunspot class into two sub-groups: "Large" and "Small". In addition, for each class, we classify it into three sub-groups according to sunspot class area change: "Decrease", "Steady", and "Increase". In terms of sunspot class area, the solar flare and CME occurrence probabilities noticeably increase at compact and large sunspot groups (e.g., 'Fkc'). In terms of sunspot area change, solar flare and CME occurrence probabilities for the "Increase" sub-groups are noticeably higher than those for the other sub-groups. For example, in case of the (M+X)-class flares of 'Dkc' class, the flare occurrence probability of the "Increase" sub-group is three times higher than that of the "Steady" sub-group. In case of the 'Eai' class, the CME occurrence probability of the "Increase" sub-groups is five time higher than that of the "Steady" sub-group. Our results demonstrate statistically that magnetic flux and its emergence enhance solar flare and CME occurrence, especially for compact and large sunspot groups.

  • PDF

SOLAR MICROWAVE BURSTS AND ELECTRON KINETICS

  • LEE JEONGWOO;BONG SU-CHAN;YUN HONG SIK
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.spc1
    • /
    • pp.63-73
    • /
    • 2003
  • Solar flares present a number of radiative characteristics indicative of kinetic processes of high energy particles. Proper understanding of the kinetic processes, however, relies on how well we can separate the acceleration from transport characteristics. In this paper, we discuss microwave and hard X-ray bursts as a powerful tool in investigating the acceleration and transport of high energy electrons. After a brief review of the studies devoted to the kinetic process of solar flare particles, we cast them into a simple formulation which allows us to handle the injection, trap, and precipitation of flare electrons self-consistently. The formulation is then taken as a basis for interpreting and analyzing a set of impulsive and gradual bursts occurred on 2001 April 6 observed with the Owens Valley Solar Array, and HXT/WBS onboard Yohkoh satellite. We quantify the acceleration, trap, and precipitation processes during each burst in terms of relevant time scales, and also determine ambient density and magnetic field. Our result suggests that it should be the acceleration property, in particular, electron pitch angle distribution, rather than the trap condition, that is mainly responsible for the distinctive properties of the impulsive and gradual flares.

PRELIMINARY FEASIBILITY STUDY OF THE SOLAR OBSERVATION PAYLOADS FOR STSAT-CLASS SATELLITES

  • Moon, Yong-Jae;Cho, Kyung-Seok;Jin, Ho;Chae, Jong-Chul;Lee, Sung-Ho;Seon, Kwang-Il;Kim, Yeon-Han;Park, Young-Deuk
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.329-342
    • /
    • 2004
  • In this paper, we present preliminary feasibility studies on three types of solar observation payloads for future Korean Science and Technology Satellite (STSAT) programs. The three candidates are (1) an UV imaging telescope, (2) an UV spectrograph, and (3) an X-ray spectrometer. In the case of UV imaging telescope, the most important constraint seems to be the control stability of a satellite in order to obtain a reasonably good spatial resolution. Considering that the current pointing stability estimated from the data of the Far ultraviolet Imaging Spectrograph (FIMS) onboard the Korean STSAT-1, is around 1 arc minutes/sec, we think that it is hard to obtain a spatial resolution sufficient for scientific research by such an UV Imaging Telescope. For solar imaging missions, we realize that an image stabilization system, which is composed of a small guide telescope with limb sensor and a servo controller of secondary mirror, is quite essential for a very good pointing stability of about 0.1 arcsec. An UV spectrograph covering the solar full disk seems to be a good choice in that there is no risk due to poor pointing stability as well as that it can provide us with valuable UV spectral irradiance data valuable for studying their effects on the Earth's atmosphere and satellites. The heritage of the FIMS can be a great advantage of developing the UV spectrograph. Its main disadvantage is that two major missions are in operation or scheduled. Our preliminary investigations show that an X-ray spectrometer for the full disk Sun seems to be the best choice among the three candidates. The reasons are : (1) high temporal and spectral X-ray data are very essential for studying the acceleration process of energetic particles associated with solar flares, (2) we have a good heritage of X-ray detectors including a rocket-borne X-ray detector, (3) in the case of developing countries such as India and Czech, solar X-ray spectrometers were selected as their early stage satellite missions due to their poor pointing stabilities, and (4) there is no planned major mission after currently operating Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) mission. Finally, we present a preliminary design of a solar X-ray spectrometer covering soft X-ray (2 keV) to gamma ray (10 MeV).

THE PERIODICITY OF THE SOLAR FLARE PRODUCTION DURING THE ACTIVITY CYCLE 22

  • TOHMURA ICHIROH;TOKIMASA NORITAKA;KUBOTA JUN
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.321-322
    • /
    • 1996
  • Using the data on the occurrences of the Ho: and soft X-ray flares for the time interval of January 1, 1986-May :31, 1994, we have studied the middle term(30-300days) pericities of the solar flare production during the activity cycle 22. Power analysis of the time seies of daily H$\alpha$ flare index in the northern hemisphere shows prominent periodicities at 220, 120, 109, and 92 days(see Figures l(a) and l(b)), while in the southern hemisphere, those at 267, 213, 183, 167, and 107 days are apparent, though their peaks are not so distint as those in the northern hemisphere. Periodogram of daily soft X-ray flare index also reveal the periodicities at 279, 205, 164, 117, and 91 days in the northern hemisphere, and at 266, 220, 199, 162, 120, and 100 days in the southern hemisphere. Howeer, the 155-day periodicity reported for the earlier cycles, 19, 20, and 21, could not be confirmed in our analysis. to be submitted to Solar Physics; an extended abstract.

  • PDF