• Title/Summary/Keyword: X-Mode Vibration

Search Result 88, Processing Time 0.022 seconds

A Study for behavior mode frequency of railway vehicle using ramp device (Ramp장치를 이용한 철도차량 거동모드 주파수에 관한 연구)

  • Yang, Hee-Joo;Woo, Kwan-Je;Seong, Jae-Ho
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.30-35
    • /
    • 2010
  • The railway vehicle is a multi-body system running on the track which consists of carbody, bogie and wheelset, each of components is connected with rigid mass, spring and damper. each of components has translation motions of longitudinal (X axis), lateral(Y axis) and vertical(Z axis) direction, and rotation motions of X, Y, Z axis which are named Rolling, Pitching and Yawing. The vibration mode of railway vehicle is difficult to find the characteristics of motion during the operation on the track because these happen to independence or duplication motion caused by vehicle, wheel/rail and track irregularity etc. This paper presents the result of ramp test to show the bounce, roll, pitch and yaw mode frequency of the railway vehicle.

  • PDF

Aging of Resonant Frequency of PZT Piezoelectric Ceramic Resonantors (PZT 압전세라믹스 공진자의 공진주파수의 경시변화)

  • 이개명;강찬호;김병효;황충구;고승우
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.109-114
    • /
    • 2002
  • Aging stabilities of the operating frequency of piezoelectric devices such as filter, oscillator and discriminator are very important. In this study it was studied aging stabilities of the length-extensional vibration mode of Pb(Zr$\_$y/Ti$\_$1-y/)O$_3$+x[wt%]Cr$_2$O$_3$ ceramics. PZT ceramics in Morphotropic phase boundary have higher aging rates of k$\_$31/ and resonant frequency than those in tetragonal phase or rhombohedral phase. Thermal aging moves the composition with maximum aging rate to Zr-rich side in Cr not added PZT system. Aging rate of resonant frequency of the ceramics with x=0.1, y=0.53 and x=0.3, y=0.53 increased by thermal aging.

  • PDF

An experimental study of a circular cylinder's two-degree-of-freedom motion induced by vortex

  • Kim, Shin-Woong;Lee, Seung-Jae;Park, Cheol-Young;Kang, Donghoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.4
    • /
    • pp.330-343
    • /
    • 2016
  • This paper presents results of an experimental investigation of vortex-induced vibration (VIV) of a flexibly mounted and rigid cylinder with two-degrees-of-freedom with respect to varying ratio of in-line natural frequency to cross-flow natural frequency, $f^*$, at a fixed low mass ratio. Combined in-line and cross-flow motion was observed in a sub-critical Reynolds number range. Three-dimensional displacement meter and tension meter were used to measure dynamic responses of the model. To validate the results and the experiment system, x and y response amplitudes and ratio of oscillation frequency to cross-flow natural frequency were compared with other experimental results. It has been found that the higher harmonics, such as third and more vibration components, can occur on a certain part of steel catenary riser under a condition of dual resonance mode. In the present work, however, due to the limitation of a size of circulating water channel, the whole test of a whole configuration of the riser at an adequate scale for VIV phenomenon was not able to be conducted. Instead, we have modeled a rigid cylinder and assumed that the cylinder is a part of steel catenary riser where the higher harmonic motions could occur. Through the experiment, we have found that even though the cylinder was assumed to be rigid, the occurrence of the higher harmonic motions was observed in a small reduced velocity ($V_r$) range, where the influence of the in-line response is relatively large. The transition of the vortex shedding mode from one to another was examined by using time history of x and y directional displacement over all experimental cases. We also observed the influence of in-line restoring force power spectral density with $f^*$.

Effect of Harmonic Components on the Resonance of Bearing Casing Structures in a Turbine Rotor System (조화성분이 베어링 덮개 구조물의 공진에 미치는 영향)

  • Song, Oh-Seop;Yang, Kyeong-Hyeon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.9
    • /
    • pp.847-852
    • /
    • 2007
  • Design aspects of a bearing casing system of a power plant are mainly focused on the strength and weight of itself to have a more stable system. Since the rotor speed often passes through the critical speed region when the operation begins, the relation between the rotating frequency of the rotor and natural frequency of the casing is very important for a prevention of resonance. However, harmonic components above the rotating frequency have often been overlooked the design for the resonance avoidance. In this paper, it is revealed that resonance vibration is generated when the natural frequency of a bearing casing is close to the one of harmonics of basic rotating frequency(1x), and as a consequence, sensing qualify of seismoprobes attached to the bearing casing structure can be seriously damaged. In order to reduce the resonance vibration, some stiffeners are added to the casing structures. Significant reduction in the magnitude of vibration corresponding to 2x harmonic of basic rotating frequency is observed from both FE analysis and experiment.

Fabrication and Characteristics of Flat-type $L_{-}$-$B_{8}$ Mode Ultrasonic Motors (평판형 종($L_{-}$-굴곡($B_{8}$)모드 초음파 전동기의 제작과 특성)

  • U, Sang-Ho;Lee, Eun-Hak;Kim, Jin-Su
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.7
    • /
    • pp.292-297
    • /
    • 2002
  • In this paper, a flat-type $L_{-}$-$B_{8}$ mode Ultrasonic Motor[USM] having the size of 80 x 20 x ${1.5}mm^3$($l{\times}\omega{\times}t$) was designed and fabricated to examine the characteristics of an ultrasonic vibration. We used ANSYS simulation program based on FEM to get the optimum design of this USM. As results of experiment, the fastest speed of revolution(v), the maximum torque(T) and the efficiency(n) were 37.5cm/s, 5.0 mN.m and 1.17% when 27.9KHz, 150N, 50V were applied respectively. And this flat-type $L_{-}$-$B_{8}$ mode USM could be controlled the speed of rotor revolution by applied voltage, frequency and pre-load of rotor as well as showed the characteristics of typical drooping torque-speed, large torque and high speed. So, we think that this flat-type $L_{-}$-$B_{8}$ mode USM has characteristics of enough torque and velocity to be usable for applications in forwarding device of an electric card or a paper, etc.

Improving Thermal Resisting Property of PZT Ceramics by Thermal Aging (열에이징에 의한 PZT세라믹스의 내열특성 개선)

  • Lee, Gae-Myung;Kim, Byung-Hyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.1
    • /
    • pp.43-49
    • /
    • 2005
  • Temperature stabilities of resonance frequencies of the substrates are very important in piezoelectric ceramics oscillators and fitters. In this study, it was investigated thermal resisting property of the length-extensional vibration mode of PZT ceramics. The mode can be utilized in fabricating ultra-small 55 kHz IF devices. We fabricated the ceramic specimens with x = 0.51, 0.52, 0.53, 0.54, and 0.55 in the Pb(Zr$\sub$x/Ti$\sub$1-x/)O$_3$ system. And their resonance frequencies were measured before 1st thermal aging, after 1st and 2nd thermal aging. In order to investigate the influence of thermal aging on thermal resisting properties, thermally aged specimens were once mote thermally aged. Before 1st thermal aging, the specimens of the compositions with morphotropic phase, x = 0.53 and rhombohedral phase, x = 0.54 have weak thermal resisting property of resonance frequency, while tetragonal phase, x = 0.51 has robust thermal resisting property of resonance frequency. 1st thermal aging improved thermal resisting property of resonance frequency in all specimens.

Exact Solutions for Vibration and Buckling of An SS-C-SS-C Rectangular Plate Loaded by Linearly Varying In-plane Stresse (등변분포 평면응력을 받는 SS-C-SS-C 직사각형 판의 진동과 좌굴의 엄밀해)

  • 강재훈;심현주;장경호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.1
    • /
    • pp.56-63
    • /
    • 2004
  • Exact solutions are presented for the free vibration and buckling of rectangular plates haying two opposite edges ( x=0 and a) simply supported and the other two ( y=0 and b) clamped, with the simply supported edges subjected to a linearly varying normal stress $\sigma$$_{x}$=- $N_{0}$[1-a(y/b)]/h, where h is the plate thickness. By assuming the transverse displacement ( w) to vary as sin(m$\pi$x/a), the governing partial differential equation of motion is reduced to an ordinary differential equation in y with variable coefficients. for which an exact solution is obtained as a power series (the method of Frobenius). Applying the clamped boundary conditions at y=0 and byields the frequency determinant. Buckling loads arise as the frequencies approach zero. A careful study of the convergence of the power series is made. Buckling loads are determined for loading parameters a= 0, 0.5, 1, 1.5. 2, for which a=2 is a pure in-plane bending moment. Comparisons are made with published buckling loads for a= 0, 1, 2 obtained by the method of integration of the differential equation (a=0) or the method of energy (a=1, 2). Novel results are presented for the free vibration frequencies of rectangular plates with aspect ratios a/b =0.5, 1, 2 when a=2, with load intensities $N_{0}$ / $N_{cr}$ =0, 0.5, 0.8, 0.95, 1. where $N_{cr}$ is the critical buckling load of the plate. Contour plots of buckling and free vibration mode shapes ate also shown.shown.

Design of Ultrasonic Linear Motor for X-Y Stage (X-Y 스테이지를 위한 초음파 리니터 모터의 설계)

  • 김태열
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.316-320
    • /
    • 2000
  • An ultrasonic linear motor was composed of a slider and a stator vibrator including piezoelectric material and elastic material. The ultrasonic linear motors mainly consist of an ultrasonic oscillator which generates elliptical oscillations. Elliptical oscillations are generated by synthesizing two degenerated modes. The design of a stator for an Ultrasonic linear motor was optimized with respect to vibration mode and direction of vibratory displacement by employing the finite element method. The motors were designed by varying the width of stator vibrator and the thickness, the length and the position of piezoceramics.

  • PDF

Aging of Length-Extensional Vibration Modes in PZT Ceramics (PZT 세라믹스에 있어서 길이진동모드의 경시변화)

  • 이개명;김병효;황충구;강찬호;현덕수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.10
    • /
    • pp.858-864
    • /
    • 2002
  • Aging stabilities of the operating frequency of piezoelectric devices such as filter, oscillator and discriminator are very important. In this study it was studied aging stabilities of the length-extensional vibration mode of Pb(Zr$\^$y/O$_3$+ x[wt%]Cr$_2$Co$_3$ ceramics. PZT ceramics in morphotropic phase boundary have higher aging rates of k$\_$31/ and resonance frequency than those in tetragonal phase or rhombohedral phase. Thermal aging moves the composition with maximum aging rate to Zr-rich side in Cr$_2$O$_3$ not added PZT system. In the PZT system, aging rates of k$\_$31/ and resonance frequency for first 30 days are bigger than those for the following 90 days. Thermal aging decrease those for first 30 days. Aging rate of resonance frequency of the ceramics with x=0.1, y=0.53 and x=0.3, y=0.53 increased by thermal aging.

Adaptive tuned dynamic vibration absorbers working with MR elastomers

  • Zhang, X.Z.;Li, W.H.
    • Smart Structures and Systems
    • /
    • v.5 no.5
    • /
    • pp.517-529
    • /
    • 2009
  • This paper presents the development of a new Adaptive Tuned Dynamic Vibration Absorber (ATDVA) working with magnetorheological elastomers (MREs). The MRE materials were fabricated by mixing carbonyl iron particles with silicone rubber and cured under a strong magnetic field. An ATDVA prototype using MRE as an adaptable spring was designed and manufactured. The MRE ATDVA worked in a shear mode and the magnetic field was generated by a magnetic circuit and controlled through a DC power supply. The dynamic performances or the system transmissibility at various magnetic fields of the absorber were measured by using a vibration testing system. Experimental results indicated that this absorber can change its natural frequency from 35Hz to 90Hz, 150% of its basic natural frequency. A real time control logic is proposed to evaluate the control effect. The simulation results indicate that the control effect of MRE ATDVA can be improved significantly.