• Title/Summary/Keyword: X-Band radar X-band

Search Result 250, Processing Time 0.038 seconds

A Design of X-Band Tile Type Active Transmit/Receive Module (X 대역 타일형 능동 송수신 모듈 설계)

  • Ha, Jung-Hyen;Moon, Ju-Young;Lee, Ki-Won;Nam, Byung-Chang;Yun, Sang-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.12
    • /
    • pp.1467-1474
    • /
    • 2010
  • A tile type active T/R(Transmit/Receive) module for X-band active array radar is demonstrated in this paper. Proposed tile type structure based on fuzz button solderless vertical interconnection shows wide band characteristic of about 30 % bandwidth in X-band with insertion loss of below 0.6 dB and input and output VSWR of less than 1.7. Moreover, the mismatching generally appeared in the vertical interconnection which shown wide band characteristic can also be minimized and, therefore, good gain flatness can be achieved.

Fabrication and Design of Multi-Layered Radar Absorbing Structures of MWNT-Filled Glass/Epoxy Plain-Weave Composites (MWNT가 첨가된 유리/에폭시 평직 복합재료로 이루어진 다층형 전자파 흡수 구조체의 제작 및 설계)

  • Lee, Sang-Eui;Kang, Ji-Ho;Kim, Chun-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.11
    • /
    • pp.24-32
    • /
    • 2005
  • The object of this study is to design radar absorbing structures(RAS) with load-bearing ability in X-band. Glass/Epoxy plain-weave composites of excellent specific stiffness and strength, containing multi-walled carbon nanotubes(MWNT) added to induce dielectric loss were fabricated. The observation of microstructure and the permittivity of the composites confirmed that the materials are suitable to be used for radar absorbing material. Genetic algorithm and theory for reflection/transmission of electromagnetic waves in a multi-layered RAS were applied to conduct an optimal design of a RAS composed of the developed composites. We observed that the thickness per ply changes with the number of ply and MWNT contents. The fabrication process was proposed considering the problem and applied to fabricate a designed RAS and the theoretical and measured reflection loss of the RAS were also found in good agreement.

Radar Echo Signal Simulation Equipment with a Precise Range-velocity Control Capability (정밀 거리-속도 모사 기능을 갖는 레이더 반사 신호 모의장치)

  • Han, Il-Tak;Kim, Jong-Mann;Kim, Wan-Kyu;Lee, Min-Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.1139-1146
    • /
    • 2010
  • Simulated target generators are used to evaluate the various radar performance. Using the radar parameters such as target range(time delay), doppler frequency, target RCS, simulated target generator can be developed. Especially moving targets are simulated by control time delay and update target signal intensive for target range. Base on this concepts, in this paper, simulated target generators are designed and developed for X-band Radar performance test. Developed equipment is evaluated its performance and then tested with X-band Radar. This paper presents these design, development, and test results of developed target generator.

A Design of X-Band Microstrip Array Antenna (X대역 마이크로스트립 배열 안테나)

  • Kim, Min-Joon;Cheon, I-Hwan;Kim, Ju-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.5
    • /
    • pp.860-867
    • /
    • 2009
  • In this paper, we designed the array antenna for FMCW radar in X - band frequency, and we chose stacked structure for improvement of narrow bandwidth. The array antenna is implemented on the circuit board which is relative permittivity 2.33 and the stacked patchs are designed on the circuit board which is relative permittivity 4.6. A Foam which has a similar permittivity of air is added to keep the particular gap between array antenna and the stacked patch. The result of array antenna has characteristics that a half-power beam width is $10.6^{\circ}$ and antenna gain is 18.70 dBi and bandwidth is 1.25GHz at the design frequency of 9GHz. The result of the array antenna with the stacked structure has that the half power beam width is $15.17^{\circ}$ and the antenna gain is 15.85dBi and bandwidth is 2GHz. It is needed to improve the antenna gain as keeping bandwidth in same level.

3-Port Circulator for X-Band Radar (X-Band 레이더를 위한 3-포트 서큘레이터)

  • Yoon, Sung-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.2
    • /
    • pp.355-362
    • /
    • 2015
  • In this study, we have fabricated 9.385[GHz] circulator that is composed of WR112 waveguide and Ferrite for X-band radar. For designing Ferrite, B/R mode(Below Resonance mode) was used and calculated the condition of 120 degree rotation of the electric field in Ferrite and calculated internal DC magnetic field and external DC magnetic field. Also, dielectric materials of the same shape with Ferrite was filled between two Ferrite for improving the performance of the circulator, including impedance matching, bandwidth, quality factor, insertion loss. To obtain optimum shape of the Ferrite and dielectric material, we used CST MWS. Simulation result of the circulator is that 1.02 : 1 VSWR, -40dB isolation, 0.2dB insertion loss and measurement result is that 1.03 : 1, -38dB, 1.2dB at 9.385[GHz]. We can get good agreement at isolation and VSWR, but insertion loss was 1 dB great than simulation result.

A Development of the X-Band 63 Watt Pulsed SSPA for Radar (레이더용 X-대역 63 Watt Pulsed SSPA 개발)

  • Chong, Min-Kil;Na, Hyung-Gi
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.3
    • /
    • pp.380-388
    • /
    • 2011
  • In this paper, we developed the X-band 63 watt pulsed SSPA(Solid State Power Amplifier) by using HMIC(Hybrid Microwave Integrated Circuits). The pulsed SSPA consists of power supply and 3-stage amplifier modules : pre-amplifier stage, driver-amplifier stage, final-amplifier stage. The developed pulsed SSPA provides more than 63 watts of output power with a short pulse width and the duty cycle of up to 1.2 % at $70^{\circ}C$. The fabricated module offers great than 37 dB of saturated gain across the operating band. Input and output VSWR is <1.5:1. This module has an average current of 400 mA typical and operates at a +28 $V_{dc}$ supply. The developed SSPA in this paper can apply to pulsed Doppler radar with high speed operation.

Design of a Full Polarimetric Scatterometer for X-Band (X-밴드용 완전 편파 Scatterometer 설계)

  • Hwang, Ji-Hwan;Lee, Kyung-Yup;Park, Seong-Min;Oh, Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.12
    • /
    • pp.1308-1315
    • /
    • 2009
  • A full-polarimetric scatterometer(HPS: Hongik Polarimetric Scatterometer) for X-band is designed, fabricated, and verified using the theoretically well-known point-targets in this paper. The X-band full-polarimetric scatterometer consists of an OMT(Orthogonal-Mode Transducer)+horn antenna, the angle control part for the OMT+horn antenna, a transmitter/receiver with a network analyzer and a frequency-conversion circuitry, and a movable support of these parts. We use an inclinometer sensor to control the vertical and horizontal incidence angles. The full polarimetric data can be obtained because of the polarization switches and the OMT. The accuracy of the scatterometer system is verified by measuring the polarimetric RCS(Radar Cross Section) of one of the theoretically well-known point-targets, i.e., a corner reflector.

Construction of X-band automatic radar scatterometer measurement system and monitoring of rice growth (X-밴드 레이더 산란계 자동 측정시스템 구축과 벼 생육 모니터링)

  • Kim, Yi-Hyun;Hong, Suk-Young;Lee, Hoon-Yol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.374-383
    • /
    • 2010
  • Microwave radar can penetrate cloud cover regardless of weather conditions and can be used day and night. Especially a ground-based polarimetric scatterometer has advantages of monitoring crop conditions continuously with full polarization and different frequencies. Kim et al. (2009) have measured backscattering coefficients of paddy rice using L-, C-, X-band scatterometer system with full polarization and various angles during the rice growth period and have revealed the necessity of near-continuous automatic measurement to eliminate the difficulties, inaccuracy and sparseness of data acquisitions arising from manual operation of the system. In this study, we constructed an X-band automatic scatterometer system, analyzed scattering characteristics of paddy rice from X-band scatterometer data and estimated rice growth parameter using backscattering coefficients in X-band. The system was installed inside a shelter in an experimental paddy field at the National Academy of Agricultural Science (NAAS) before rice transplanting. The scatterometer system consists of X-band antennas, HP8720D vector network analyzer, RF cables and personal computer that controls frequency, polarization and data storage. This system using automatically measures fully-polarimetric backscattering coefficients of rice crop every 10 minutes. The backscattering coefficients were calculated from the measured data at a fixed incidence angle of $45^{\circ}$ and with full polarization (HH, VV, HV, VH) by applying the radar equation and compared with rice growth data such as plant height, stem number, fresh dry weight and Leaf Area Index (LAI) that were collected at the same time of each rice growth parameter. We examined the temporal behaviour of the backscattering coefficients of the rice crop at X-band during rice growth period. The HH-, VV-polarization backscattering coefficients steadily increased toward panicle initiation stage, thereafter decreased and again increased in early-September. We analyzed the relationships between backscattering coefficients in X-band and plant parameters and predicted the rice growth parameters using backscattering coefficients. It was confirmed that X-band is sensitive to grain maturity at near harvesting season.

X-band Voltage Controlled Oscillator using Varactor Diode (바랙터 다이오드를 이용한 X-밴드 전압제어 발진기)

  • Park, Dong-Kook;Yun, Na-Ra;Choi, Yean-Ji;Kim, Yea-Ji
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.756-761
    • /
    • 2009
  • In this paper, a X band voltage controlled oscillator is proposed. The oscillator uses a transistor as an oscillating element and its oscillating frequencies are controlled by the tuning voltage of varactor diode. Using the circuit simulation tools, the matching circuits between the transistor and varactor diode, its input and output matching circuits, and a feedback circuits are designed. The measured results of the fabricated oscillator show that its oscillation frequencies are from 10.50GHz to 10.88GHz according to the turning voltages of 1V to 18V, its output power levels are about 4.3dBm, and its phase noise is around -43.5dBc/Hz at 100kHz offset frequency of 10.5GHz.

A Study on Design and Fabrication on X-Band Oscillator for radar system (레이더 시스템용 X-Band 발진기의 설계 및 제작에 관한 연구)

  • 손병문;강중순
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.7
    • /
    • pp.1210-1218
    • /
    • 2001
  • In this paper, A X-band voltage-controlled hair-pin resonator oscillator(VCHRO) is able to a local oscillator or a signal source in transmitter/receiver of a microwave communication system for mobile radar, is designed and fabricated In order to apply mobile radar system is used the hair-pin resonator stronger on shock or vibration than the dielectric resonator, and also, in order to improvement the phase noise and output power is used a system of serial feedback format A hair-pin resonator was simulated by momentum method of HP ADS and then a oscillator circuit was designed that operates at 10.525 GHz by nonlinear method in harmonic balance simulation. The HRO generated output power of 6.93 dBm at 10.525 GHz, phase noise of -57.74 dBc at 100 kHz offset from carrier and the 2'nd harmonic was suppressed -23.90 dBc.

  • PDF