• Title/Summary/Keyword: X -ray Computed

Search Result 787, Processing Time 0.035 seconds

A Flexible Precise 2D-Image Reconstruction in X-Ray Computed Tomography for Soft Tissues Based On Non-Uniform Sampling Theorem

  • Kim, io-Sasaki;Hirokazu Okaniwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.80.4-80
    • /
    • 2002
  • Performance of the previously proposed 2D-image reconstruction method for soft tissues in x-ray computed tomography is evaluated thoroughly through numerical experiments with 4 assumed absorption rates of different symmetries under practical conditions, and the following special features are made clear: It is quite precise, especially at points where the object taking larger values; about two orders less magnitude errors than the conventional most precise method when no noise existing, without any 1D- or 2D-interpolation. In spite of its high sensitivity to the noises, it is even more precise by about 8dB than the latter, to relative pojection data noise power of 5%.

  • PDF

Analysis of Failure Mechanisms during Powder Compaction

  • Wu, Chuan-Yu;Bentham, A.C.;Mills, A.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.26-27
    • /
    • 2006
  • Capping mechanisms during the compaction of pharmaceutical powders were explored. Both experimental and numerical investigations were performed. For the experimental study, an X-ray Computed Microtomography system has also used to examine the internal failure patterns of the tablets produced using a compaction simulator. Finite element (FE) methods have also been used to analyse the powder compaction. The experimental and numerical studies have shown that the shear bands developed at the early stage of unloading appear to be responsible for the occurrence of capping. It has also been found that the capping patterns depend on the compact shape.

  • PDF

Damage characterization in fiber reinforced polymer via Digital Volume Correlation

  • Vrgoc, Ana;Tomicevic, Zvonimir;Smaniotto, Benjamin;Hild, Francois
    • Coupled systems mechanics
    • /
    • v.10 no.6
    • /
    • pp.545-560
    • /
    • 2021
  • An in situ experiment imaged via X-ray computed tomography was performed on a continuous glass fiber mat reinforced epoxy resin composite. The investigated dogbone specimen was subjected to uniaxial cyclic tension. The reconstructed scans (i.e., gray level volumes) were registered via Digital Volume Correlation. The calculated maximum principal strain fields and correlation residual maps exhibited strain localization areas within the material bulk, thus indicating damage inception and growth toward the specimen surface. Strained bands and areas of elevated correlation residuals were mainly concentrated in the narrowest gauge section of the investigated specimen, as well as on the specimen ligament edges. Gray level residuals were laid over the corresponding mesostructure to highlight and characterize damage development within the material bulk.

Clinical Implementation of Deep Learning in Thoracic Radiology: Potential Applications and Challenges

  • Eui Jin Hwang;Chang Min Park
    • Korean Journal of Radiology
    • /
    • v.21 no.5
    • /
    • pp.511-525
    • /
    • 2020
  • Chest X-ray radiography and computed tomography, the two mainstay modalities in thoracic radiology, are under active investigation with deep learning technology, which has shown promising performance in various tasks, including detection, classification, segmentation, and image synthesis, outperforming conventional methods and suggesting its potential for clinical implementation. However, the implementation of deep learning in daily clinical practice is in its infancy and facing several challenges, such as its limited ability to explain the output results, uncertain benefits regarding patient outcomes, and incomplete integration in daily workflow. In this review article, we will introduce the potential clinical applications of deep learning technology in thoracic radiology and discuss several challenges for its implementation in daily clinical practice.

Multidetector Computed Tomography in Patients with Femoral Neck Fracture for Assessing Osteoporosis: Comparison with Dual Energy X-Ray Absorptiometry (대퇴골 경부 골절 환자에서 골다공증 평가를 위한 다중검출 CT의 이용: 이중에너지 X-선 흡수계측법과의 비교)

  • Hyo Jeong Lee;Ji Young Hwang
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.1
    • /
    • pp.173-181
    • /
    • 2021
  • Purpose To evaluate the ability of the Hounsfield unit (HU) measurement of the femoral neck during multidetector computed tomography (MDCT) for assessing osteoporosis compared with dual-energy X-ray absorptiometry (DXA). Materials and Methods Forty-two patients with femoral neck fractures who underwent MDCT and DXA from July to December 2016 were included in this study. HU measurements were made of the cancellous portions of the normal contralateral femoral neck on MDCT. Bone mineral density (BMD) and T-scores were obtained at the femur DXA. Correlations of HU values with BMD and T-scores were analyzed using Spearman's correlation test. Results The mean BMD and T-score of the femoral neck were 0.650 g/cm2 and -2.4, respectively. The mean HU values for the normal, osteopenia, and osteoporosis groups were 131.9, 98.9, and 41.3, respectively. HU values at the femoral neck were positively correlated with BMD (r2 = 0.670; p < 0.001) and T-scores (r2 = 0.676; p < 0.001). Conclusion The HU values of the femoral neck on MDCT are significantly correlated with BMD and T-scores of femur DXA. The HU values may serve as a diagnostic tool for the screening of regional bone quality when MDCT is performed for other reasons.

Development of a Micro-CT System for Small Animal Imaging (소 동물 촬영을 위한 Micro-CT의 개발)

  • Sang Chul Lee;Ho Kyung Kim;In Kon Chun;Myung Hye Cho;Min Hyoung Cho;Soo Yeol Lee
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.97-102
    • /
    • 2004
  • We developed an x-ray cone-beam micro computed tomography (micro-CT) system for small-animal imaging. The micro-CT system consists of a 2-D flat-panel x-ray detector with a field-of-view (FOV) of 120${\times}$120 mm2, a micro-focus x-ray source, a scan controller and a parallel image reconstruction system. Imaging performances of the micro-CT system have been evaluated in terms of contrast and spatial resolution. The minimum resolvable contrast has been found to be less than 36 CT numbers at the dose of 95 mGy and the spatial resolution about 14 lp/mm. As small animal imaging results, we present high resolution 3-D images of rat organs including a femur, a heart and vessels. We expected that the developed micro-CT system can be greatly used in biomedical studies using small animals.

A Method for Sinogram Interpolation for Reducing X-ray Dose (CT의 선량 감소를 위한 sinogram 보간 기법)

  • Kim, Jae-Min;Lee, Ki-Seung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7C
    • /
    • pp.601-609
    • /
    • 2012
  • In this paper, a limited-view CT image reconstruction method was studied to reduce the scan times and the X-ray dose for the patients. To reduce streak artifacts which is caused by insufficient number of views, we introduce a sinogram interpolation method based on image matching. Image matching is achieved using the characteristics of the neighboring views including intensity, gradient and distance between the pixels. Interpolation is performed using the image matching results.. A numerical phantom and Al-acryl phantom were used for evaluating the effectiveness of the proposed interpolation method. The results showed that streak artifacts were reduced in the reconstructed images while the details of the images were preserved. Moreover, maximum 5% improvements in terms of PSNR were observed.

A Study on Establishment of Essential Performance Evaluation Criteria for C-arm Computed Tomography (C-arm CT의 필수 성능평가 기준 마련을 위한 연구)

  • Kim, Eun-Hye;Park, Hye-Min;Kim, Jung-Min
    • Journal of radiological science and technology
    • /
    • v.45 no.2
    • /
    • pp.127-134
    • /
    • 2022
  • In order to overcome the image quality limitations of the conventional C-arm, a flat panel detector (FPD) is used to enhance spatial resolution, detective quantum efficiency, frame rate, and dynamic range. Three-dimensional (3D) visualized information can be obtained from C-arm computed tomography (CT) equipped with an FPD, which can reduce patient discomfort and provide various medical information to health care providers by conducting procedures in the interventional procedure room without moving the patient to the CT scan room. Unlike a conventional C-arm device, a C-arm CT requires different basic safety and essential performance evaluation criteria; therefore, in this study, basic safety and essential performance evaluation criteria to protect patients, medical staff, and radiologists were derived based on International Electrotechnical Commission (IEC) standards, the Ministry of Food and Drug Safety (MFDS) standards in Korea, and the rules on the installation and operation of special medical equipment in Korea. As a result of the study, six basic safety evaluation criteria related to electrical and mechanical radiation safety (leakage current, collision protection, emergency stopping device, overheating, recovery management, and ingress of water or particulate matter into medical electrical (ME) equipment and ME systems: footswitches) and 14 essential performance evaluation criteria (accuracy of tube voltage, accuracy of tube current, accuracy of loading time, accuracy of current time product, reproducibility of radiation output, linearity and consistency in radiography, half layer value in X-ray equipment, focal size and collimator, relationship between X-ray field and image reception area, consistency of light irradiation versus X-ray irradiation, performance of the mechanical device, focal spot to skin distance accuracy, image quality evaluation, and technical characteristic of cone-beam computed tomography) were selected for a total of 20 criteria.

Observation of reinforcing fibers in concrete upon bending failure by X-ray computed tomographic imaging

  • Seok Yong Lim;Kwang Soo Youm;Kwang Yeom Kim;Yong-Hoon Byun;Young K. Ju;Tae Sup Yun
    • Computers and Concrete
    • /
    • v.31 no.5
    • /
    • pp.433-442
    • /
    • 2023
  • This study presents the visually observed behavior of fibers embedded in concrete samples that were subjected to a flexural bending test. Three types of fibers such as macro polypropylene, macro polyethylene, and the hybrid of steel and polyvinyl alcohol were mixed with cement by a designated mix ratio to prepare a total of nine specimens of each. The bending test was conducted by following ASTM C1609 with a net deflection of 2, 4, and 7 mm. The X-ray computed tomography (XCT) was carried out for 7 mm-deflection specimens. The original XCT images were post-processed to denoise the beam-hardening effect. Then, fiber, crack, and void were semi-manually segmented. The hybrid specimen showed the highest toughness compared to the other two types. Debonding based on 2D XCT sliced images was commonly observed for all three groups. The cement matrix near the crack surface often involved partially localized breakage in conjunction with debonding. The pullout was predominant for steel fibers that were partially slipped toward the crack. Crack bridging and rupture were not found presumably due to the image resolution and the level of energy dissipation for poly-fibers, while the XCT imaging was advantageous in evaluating the distribution and behavior of various fibers upon bending for fiber-reinforced concrete beam elements.

Restoration of Chest X-ray by Kalman Filter

  • Kim, Jin-Woo
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.5
    • /
    • pp.581-585
    • /
    • 2010
  • A grid was sandwiched between two cascaded imaging plates. Using a fan-beam X-ray tube and a single exposure scheme, the two imaging plates, respectively, recorded grid-less and grid type information of the object. Referring to the mathematical model of the Grid-less and grid technique, it was explained that the collected components whereas that of imaging plates with grid was of high together with large scattered components whereas that of imaging plate with grid was of low and suppressed scattered components. Based on this assumption and using a Gaussian convolution kernel representing the effect of scattering, the related data of the imaging plates were simulated by computer. These observed data were then employed in the developed post-processing estimation and restoration (kalman-filter) algorithms and accordingly, the quality of the resultant image was effectively improved.