• Title/Summary/Keyword: X형 열선프로브

Search Result 7, Processing Time 0.015 seconds

Measurements of Five-Hole Pressure Probe on Swirling Flow Fields of Gun-Type Gas Burner for Furnace (온풍난방기용 Gun식 가스버너의 스월유동장에 대한 5공압력프로브의 측정)

  • Kim, Jang Kweon;Oh, Seok Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.991-997
    • /
    • 2014
  • This study investigated the swirling flow fields of a gun-type gas burner (GTGB) without a combustion chamber under cold flow conditions. Three velocity components and the static pressure were measured with a straight-type five-hole pressure probe (GHPP) using a non-nulling calibration method and compared with the results of an X-type hot-wire probe (X-probe) and computational fluid dynamics (CFD). The GHPP measured the velocity and static pressure for the swirling flow of the central region of the GTGB better than the X-probe but produced slightly worse results than the CFD.

Turbulent heat flux measurement technique using a hot-and cold-wire combination probe (열선-냉선 조합 프로브에 의한 난류 열유속 측정기법)

  • 김경천
    • Journal of the KSME
    • /
    • v.33 no.9
    • /
    • pp.780-792
    • /
    • 1993
  • 난류 열유속 측정을 위한 실험기법을 고찰해본 결과, 열선-냉선 조합 프로브의 사용이 현재로 서는 가장 가능성 있는 기법임을 알 수 있었다. 이와 같은 기법에서 가장 중요한 요소는 난류의 온도 변동량을 정확히 측정할 수 있는 계측장치의 확보임을 알았다. 그동안 사용되어 왔던 각종 냉선온도계의 검토와 본 연구실에서 새로이 개발한 냉선온도계의 설계 및 제작 기법에 대해 소 개하였다. 여러 가지 관점에서의 성능 비교를 통해 본 연구실에서 개발된 냉선 브리지의 성능이 상당히 우수함을 보였다. 난류 열유속의 측정과 비등온 유동에서의 난류 속도 성분을 측정하기 위한 프로브는 X형 hot-wire 프로브와 I형 cold wire 프로브를 조합하여 만들어졌으며, 온도와 속도를 함께 고려하여 교정함으로써 온도구배가 있는 속도장과 난류열유속을 측정할 수 있는 방법을 소개하였다.

  • PDF

Measurement of the Three-Dimensional Flow Fields of a Gun-Type Gas Burner Using Triple Hot-Wire Probe (3중 열선 프로브를 이용한 Gun식 가스버너의 3차원 유동장 측정)

  • Kim, J.K.;Jeong, K.J.
    • Journal of Power System Engineering
    • /
    • v.10 no.3
    • /
    • pp.23-31
    • /
    • 2006
  • Mean velocities and turbulent characteristics in the three-dimensional flow fields of a gun-type gas burner were measured by using triple hot-wire probe (T-probe) in order to compare them with the results already presented by X-type hot-wire probe (X-probe). Vectors obtained by the measurement of two kinds of probes in the horizontal plane and in the cross section respectively show more or less difference in magnitude each other, but comparatively similar shape in overall distribution. Axial mean velocity component along the centerline shows that the value by T-probe is about ten times smaller than that by X-probe above the range of X/R=3. Also, the axial component of turbulent intensity along the centerline appears the biggest difference between the two probes. Moreover, axial mean velocity component, axial turbulent intensity component and rotational along the Y-directional distance show a big difference between slits and swirl vanes. On the whole, the values by T-probe appear smaller than those by X-probe.

  • PDF

Study on the Aerodynamic Characteristics of Hanyang Low Speed Wind Tunnel (한양대학교 중형 아음속 풍동의 공력특성에 관한 연구)

  • Go, Gwang Cheol;Jeong, Hyeon Seong;Kim, Dong Hwa;Jo, Jin Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.92-98
    • /
    • 2003
  • The optimum design of Hanyang low speed wind tunnel has been performed to augment flow uniformity and to reduce turbulence intensity of wind tunnel test section have to be known for reliability of wind tunnel test. The non-uniformity and turbulence intensity of Hanyang low speed wind tunnel were measured with Pilot tube and X-type hot-wire probe at various wind speeds. As the results, the non-uniformity decreases as the wind speed increases. The non-uniformity is relatively high in the proximity of the diffuser. The turbulence intensity is a little higher than design requirement in the middle of the test section.

Investigation on the Turbulent Swirling Flow Field within the Combustion Chamber of a Gun-Type Gas Burner (Gun식 가스버너의 연소실내 난류 선회유동장 고찰)

  • Kim, Jang-Kweon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.9
    • /
    • pp.666-673
    • /
    • 2009
  • The turbulent swirling flow field characteristics of a gun-type gas burner with a combustion chamber were investigated under the cold flow condition. The velocities and turbulent quantities were measured by hot-wire anemometer system with an X-type probe. The turbulent swirling flow field in the edge of a jet seems to cause a recirculation flow from downstream to upstream due to the unbalance of static pressure between a main jet flow and a chamber wall. Moreover, because the recirculation flow seems to expand the main jet flow to the radial and to shorten it to the axial, the turbulent swirling flow field with a chamber increases a radial momentum but decreases an axial as compared with the case without a chamber from the range of about X/R=1.5. As a result, these phenomena can be seen through all mean velocities, turbulent kinetic energy and turbulent shear stresses. All physical quantities obtained around the slits, however, show the similar magnitude and profiles as the case without a chamber within the range of about X/R=1.0.

Investigation on the Turbulent Flow Field Characteristics of a Gun-Type Gas Burner with and without a Duct (덕트의 유무에 따른 Gun식 가스버너의 난류유동장 특성 고찰)

  • Kim, J.K.;Jeong, K.J.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.17-24
    • /
    • 2006
  • The turbulent flow field characteristics of a gun-type gas burner with and without a duct were investigated under the isothermal condition of non-combustion. Vectors and mean velocities were measured by hot-wire anemometer system with an X-type hot-wire probe in this paper. The turbulent flow field with a duct seems to cause a counter-clockwise recirculation flow from downstream to upstream due to the unbalance of static pressure between a main jet flow and a duct wall. Moreover, the recirculation flow seems to expand the main jet flow to the radial and to shorten it to the axial. Therefore, the turbulent flow field with a duct increases a radial momentum but decreases a axial momentum. As a result, an axial mean velocity component with a duct above the downstream range of about X/R=1.5 forms a smaller magnitude than that without a duct in the inner part of a burner, but it shows the opposite trend in the outer part.

  • PDF

The Effect of Slits and Swirl Vanes on the Development of Turbulent Flow Fields in Gun-Type Gas Burner (Gun식 가스버너의 난류유동장 발달에 미치는 슬릿과 스월베인의 영향)

  • Kim, Jang-Kweon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1299-1308
    • /
    • 2003
  • This paper is studied to investigate the effect of slits and swirl vanes on the development of turbulent flow fields in gun-type gas burner with a cone type baffle plate because this gas burner is generally composed of eight slits and swirl vanes. All of turbulent characteristics including mean velocities were measured in the horizontal plane and cross section by using X-type hot-wire probe from hot-wire anemometer system. This experiment is carried out at flow rate 450 l/min in the test section of subsonic wind tunnel. Slits cause the fast jets, and then they have the characteristic that the flow is not adequately spread to radial direction and has long flow length and very small flow velocity distribution in the central part. On the contrary, swirl vanes does not have long enough for adequate flow length to downstream because the rotational flow diffuses remarkably to radial direction. However, the suitable arrangement between slits and swirl vanes causes effective flow width and flow length, and then it promotes fast flow mixing over the entire region including central part to increase turbulence more largely and effectively. Therefore, it is thought as a very desirable design method in gun-type gas burner to locate slits on the outside of swirl vanes.