• Title/Summary/Keyword: Wzy

Search Result 5, Processing Time 0.018 seconds

Genetic Characterization of the Escherichia coli O66 Antigen and Functional Identification of its wzy Gene

  • Cheng, Jiansong;Liu, Bin;Bastin David A.;Han, Weiqing;Wang, Lei;Feng Lu
    • Journal of Microbiology
    • /
    • v.45 no.1
    • /
    • pp.69-74
    • /
    • 2007
  • Escherichia coli is a clonal species, and occurs as both commensal and pathogenic strains, which are normally classified on the basis of their O, H, and K antigens. The O-antigen (O-specific polysaccharide), which consists of a series of oligosaccharide (O-unit) repeats, contributes major antigenic variability to the cell surface. The O-antigen gene cluster of E. coli O66 was sequenced in this study. The genes putatively responsible for the biosynthesis of dTDP-6-deoxy-L-talose and GDP-mannose, as well as those responsible for the transfer of sugars and for O-unit processing were identified based on their homology. The function of the wzy gene was confirmed by the results of a mutation test. Genes specific for E. coli O66 were identified via PCR screening against representatives of 186 E. coli and Shigella O type strains. The comparison of intergenic sequences located between galF and the O-antigen gene cluster in a range of E. coli and Shigella showed that this region may perform an important function in the homologous recombination of the O-antigen gene clusters.

Influence of Deletions in the Apoemulsan Gene Cluster on Acinetobacter venetian us RAG-l Polysaccharide Biosynthesis

  • Hanna, Dams-Kozlowska;Mercaldi, Michael P.;Ramjeawan, Aruranie;Kaplanl, David L
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.12
    • /
    • pp.1890-1894
    • /
    • 2008
  • Apoemulsan is a biopolymer with potent emulsification activity, produced by Acinetobacter venetian us RAG-1 (RAG-1). The wee gene cluster is responsible for apoemulsan biosynthesis. The analysis of (i) a putative polysaccharide copolymerase mutant (${\Delta}wzc$), (ii) a putative polymerase mutant (${\Delta}wzy$), and (iii) an apoemulsan-deficient variant (${\Delta}2$) indicated that the wee gene cluster controls the synthesis of two polysaccharides: high molecular weight (HMW) and low molecular weight (LMW). LMW polysaccharide of wee origin was present in LPS isolated from RAG-1 cells, suggesting a link to the Lipid A-core of LPS molecules. SDS-PAGE analysis indicated that apoemulsan is copurified with LPS polysaccharide, with implications in the emulsification activity of RAG-1 polymer.

Genetic Analysis and Serological Detection of Novel O-Antigen Gene Clusters of Plesiomonas shigelloides

  • Wang, Xiaochen;Xi, Daoyi;Li, Yuehua;Yan, Junxiang;Zhang, Jingyun;Guo, Xi;Cao, Boyang
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.4
    • /
    • pp.520-528
    • /
    • 2021
  • Plesiomonas shigelloides, a member of the family Vibrionaceae, is a gram-negative, rod-shaped, facultative anaerobic bacterium with flagella. P. shigelloides has been isolated from such sources as freshwater, surface water, and many wild and domestic animals. P. shigelloides contains 102 O-antigens and 51 H-antigens. The diversity of O-antigen gene clusters is relatively poorly understood. In addition to O1 and O17 reported by other laboratories, and the 12 O serogroups (O2, O10, O12, O23, O25, O26, O32, O33, O34, O66, O75, and O76) reported previously by us, in the present study, nine new P. shigelloides serogroups (O8, O17, O18, O37, O38, O39, O44, O45, and O61) were sequenced and annotated. The genes for the O-antigens of these nine groups are clustered together in the chromosome between rep and aqpZ. Only O38 possesses the wzm and wzt genes for the synthesis and translocation of O-antigens via the ATP-binding cassette (ABC) transporter pathway; the other eight use the Wzx/Wzy pathway. Phylogenetic analysis using wzx and wzy showed that both genes are diversified. Among the nine new P. shigelloides serogroups, eight use wzx/wzy genes as targets. In addition, we developed an O-antigen-specific PCR assay to detect these nine distinct serogroups with no cross reactions among them.

Two Enteropathogenic Escherichia coli Strains Representing Novel Serotypes and Investigation of Their Roles in Adhesion

  • Wang, Jing;Jiao, HongBo;Zhang, XinFeng;Zhang, YuanQing;Sun, Na;Yang, Ying;Wei, Yi;Hu, Bin;Guo, Xi
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.9
    • /
    • pp.1191-1199
    • /
    • 2021
  • Enteropathogenic Escherichia coli (EPEC), which belongs to the attaching and effacing diarrheagenic E. coli strains, is a major causative agent of life-threatening diarrhea in infants in developing countries. Most EPEC isolates correspond to certain O serotypes; however, many strains are non-typeable. Two EPEC strains, EPEC001 and EPEC080, which could not be serotyped during routine detection, were isolated. In this study, we conducted an in-depth characterization of their putative O-antigen gene clusters (O-AGCs) and also performed constructed mutagenesis of the O-AGCs for functional analysis of O-antigen (OAg) synthesis. Sequence analysis revealed that the occurrence of O-AGCs in EPEC001 and E. coli O132 may be mediated by recombination between them, and EPEC080 and E. coli O2/O50 might acquire each O-AGC from uncommon ancestors. We also indicated that OAg-knockout bacteria were highly adhesive in vitro, except for the EPEC001 wzy derivative, whose adherent capability was less than that of its wild-type strain, providing direct evidence that OAg plays a key role in EPEC pathogenesis. Together, we identified two EPEC O serotypes in silico and experimentally, and we also studied the adherent capabilities of their OAgs, which highlighted the fundamental and pathogenic role of OAg in EPEC.

Establishment and Application of a Multibead Serotyping Assay for Pneumococci in Korea (다중구슬 폐구균 혈청형 분석법의 국내 확립과 적용 연구)

  • Kim, Han Wool;Lee, Soyoung;Lee, Miae;Kim, Kyung-Hyo
    • Pediatric Infection and Vaccine
    • /
    • v.22 no.2
    • /
    • pp.97-105
    • /
    • 2015
  • Purpose: Serotyping pneumococcal isolates is important to monitor efficacy of pneumococcal vaccines. Because of difficulties of typing pnueumocci, a multiplex bead-based (multibead) serotyping assay was recently introduced. The aim of this study is to establish a new multibead serotyping assay and to apply this method to analyze clinical isolates of pneumococci in Korea. Methods: To establish the multibead serotyping assay, six key reagents were transferred from University of Alabama at Birmingham (UAB) to Ewha Center for Vaccine Evaluation and Study (ECVES): bead set coated with polysaccharide and monoclonal antibody pool were used in one multiplex inhibition-type immunoassay and 2 bead sets coated DNA probe and 2 primer pools were used in two multiplex PCR-based assays. After multibead serotyping assay was set up, 75 test samples of pneumococci were analyzed whether ECVES is able to identify serotype correctly. After confirming the performance, serotyping assay was applied to identify serotypes of 528 clinical isolates of pneumococci collected from 3 different hospitals. Results: After establishment of the multibead pneumococcal serotyping assay system at ECVES, 75 test samples were analyzed. There was no discrepancy of serotypes of 75 test samples between the results assigned at UAB and those at ECVES. The serotypes of 528 pneumococci isolated from patients or healthy subjects were determined in 94.3% of isolates (498/528). Conclusions: The multibead pneumococcal serotyping assay can be successfully established in Korea. With this method, surveillance of serotypes of pneumococci isolated from patients as well as healthy subjects could be studied.